
7

From Description Logic Provers
to Knowledge Representation Systems

Deborah L. McGuinness

Peter F. Patel-Schneider

Abstract

A description-logic based knowledge representation system is more than an infer-
ence engine for a particular description logic. A knowledge representation system
must provide a number of services to human users, including presentation of the
information stored in the system in a manner palatable to users and justification of
the inferences performed by the system. If human users cannot understand what
the system is doing, then the development of knowledge bases is made much more
difficult or even impossible. A knowledge representation system must also provide
a number of services to application programs, including access to the basic infor-
mation stored in the system but also including access to the machinations of the
system. If programs cannot easily access and manipulate the information stored in
the system, then the development of applications is made much more difficult or
even impossible.

7.1 Introduction

A description logic-based knowledge representation system does not live in a vac-
uum. It has to be prepared to interact with several sorts of other entities. One class
of entities consists of human users who develop knowledge bases using the system.
If the system cannot effectively interact with these users then it will be difficult to
create knowledge bases in the system, and the system will not be used. Another
class of entities consists of programs that use the services of the system to provide
information to support applications. If the system cannot effectively interact with
these programs then it will be difficult to create applications using the system, and
the system will not be used.

However, before one can talk about effective interaction, there has to be basic
interaction between the knowledge representation system and applications or users.
This basic interaction has to do with the mechanics of telling information to the

271



272 D. L. McGuinness, P. F. Patel-Schneider

system and retrieving information from it. At this level the system just maintains
what is was told and responds to the queries by running an inference procedure for
the logic it implements.

The basic interface is not sufficient for effective access to the system. On the
application side there is need for a treatment of exceptional conditions, wider inter-
face to applications, remote interfaces, and concurrent access, among others. There
is also need for responsive reaction by the system. On the human side there is
need for better presentation of the results of queries, particularly the suppression
of irrelevant detail; explanation of the inferences performed by the system; better
support for the creation of large description logic knowledge bases, particularly by
several people working in collaboration.

Even if all the above are present in a system, it will still not be complete. There
is also a need to have effective information about the system widely available. This
information has to be in various forms, including the obvious user manuals, but also
including interactive tutorials and demonstration system.

A system that does not include all of the above services is not a complete knowl-
edge representation system.

Our discussion of the services that need to be provided will mostly be described
in terms of an arbitrary description logic knowledge representation system. How-
ever, some of our examples will be given in the context of the Classic family
of knowledge representation systems developed at AT&T [Borgida et al., 1989;
Brachman et al., 1991; Patel-Schneider et al., 1991], as Classic has had the
longest lived and most extensive industrial application history of any descrip-
tion logic knowledge representation system. The Classic application that we
will refer to the most is the configuration of transmissions equipment—an ap-
plication developed within AT&T [Wright et al., 1993; McGuinness et al., 1995;
McGuinness and Wright, 1998b; McGuinness et al., 1998].

In a typical configuration problem, a user is interested in entering a small number
of constraints and obtaining a complete, correct, and consistent parts list. Given a
configuration application’s domain knowledge and the base description logic infer-
ence system, the application can determine if the user’s constraints are consistent.
It can then calculate the deductive closure of the user-stated knowledge and the
background domain knowledge to generate a more complete description of the fi-
nal parts list. For example, in a home theater demonstration configuration system
[McGuinness et al., 1995], user input is solicited on the quality a user is willing to
pay for and the typical use (audio only, home theater only, or combination), and
then the application deduces all applicable consequences. This typically generates
descriptions for 6–20 subcomponents which restrict properties such as price range,
television diagonal, power rating, etc. A user might then inspect any of the individ-



From Description Logic Provers to Knowledge Representation Systems 273

ual components possibly adding further requirements to it which may, in turn, cause
further constraints to appear on other components of the system. Also, a user may
ask the system to “complete” the configuration task, completely specifying each
component so that a parts list is generated and an order may be completed.

This home theater configurator example is fairly simple but it is motivated by real
world application uses in configuring very large pieces of transmission equipment
where objects may have thousands of parts and subparts and one decision can
easily have hundreds of ramifications. It was complicated applications such as these
that drove our work on access to information. More information can be found on
description logics for configuration in in this book in Chapter 12. Another example
application that drove our work on information access and presentation needs was
a simple description logic backend system supporting knowledge-enhanced search
for the web called FindUR [McGuinness, 1998; McGuinness et al., 1997] which is
also described in Chapter 14.

7.2 Basic access

Basic access to a description logic knowledge base consists of simple mechanisms to
create description logic knowledge bases and to query them. The foundational as-
pects of this basic interaction have been well-studied. For example, Levesque [1984]
proposed that the basic interface to any knowledge representation system consist
of two kinds of interactions—one to tell information to the system and one to ask
whether information follows from what was previously told to the system.

Many frame-oriented knowledge representation systems embody such distinc-
tions, such as the Generic Frame Protocol [Chaudhri et al., 1997], and OKBC
(Open Knowledge Base Connectivity) [Chaudhri et al., 1998a]. In the description
logic community, this basic interaction was standardized into an interface speci-
fication that defined a number of tell and ask operations that a description logic
knowledge representation system should implement [Patel-Schneider and Swartout,
1993].1 This specification is commonly known as the Krss specification. The de-
scription of a minimal description logic knowledge representation system interface
given here will generally follow this Krss specification. The Krss specification
incorporates the DFKI standardized syntax and semantics [Baader et al., 1991].
Examples given here follow the syntax of Chapter 2, for the abstract syntax, and
the syntax of Krss for a Lisp-like syntax that can actually be used from within a
computer.

One problem with defining a tell-and-ask interface for a description logic knowl-
edge representation system is that even a minimal interface depends on the expres-
1 The Krss specification also incorporates a number of operations that fall under the advanced interface

that will be discussed later.



274 D. L. McGuinness, P. F. Patel-Schneider

Table 7.1. Syntax and semantics of making definitions.

Program Syntax Abstract Semantics
Syntax

(define-concept CN C) CN ≡ C CN I = CI

(define-primitive-concept CN C) CN v C CN I ⊆ CI

(define-role RN R) RN ≡ R RN I = RI

(define-primitive-role RN R) RN v R RN I ⊆ RI

(define-attribute AN A) AN ≡ A AN I = AI

(define-primitive-attribute AN R) AN v R AN I ⊆ RI

Table 7.2. Inclusion syntax and semantics.

Program Syntax Abstract Semantics
Syntax

(included C D) C v D CI ⊆ DI

sive power of the logic. As an example, if the description logic implemented by the
system does not include individuals then of course there is no need to include any
facilities for making statements about individuals. To overcome this difficulty this
chapter will describe the interfaces required for a system that implements a typical
description logic with both concepts and individuals.

Such a system has to have a method for creating a terminology of concepts. A
syntax for creating such a terminology, taken directly from the Krss specification,
is given in Table 7.1. A terminological knowledge base, or TBox, is then a set of
such definitions perhaps with the condition that every concept, role, and attribute
name has at most one definition. There may also be the side condition that there
are no recursive definitions.

Some representation systems may have other definitions allowable or other re-
strictions. For example, some systems allow the definition of transitive roles, via a
define-transitive-role definition. Other systems prohibit non-primitive roles.

If the underlying description logic allows for recursive definitions, then it may be
easier to provide an even more basic interface to define concepts. Table 7.2 shows
a minimal interface for a system that employs arbitrary concept inclusions as its
means of defining concepts.

If the system incorporates individual reasoning, then it has to have a mechanism
for adding information about these individuals. One such method is via the asser-
tions in Table 7.3. An assertional knowledge base, or ABox, is then a set of such
assertions.

Once information has been told to the system, there has to be a mechanism for



From Description Logic Provers to Knowledge Representation Systems 275

Table 7.3. Assertion syntax and semantics.

Program Syntax Abstract Semantics
Syntax

(instance IN C) IN ∈ C IN I ∈ CI

(related IN I R) 〈IN , I〉 ∈ R 〈IN I , II〉 ∈ RI

Table 7.4. Query syntax and semantics.

Query Meaning
(concept-subsumes? C1 C2) C1 v C2
(role-subsumes? R1 R2) R1 v R2
(individual-instance? IN C) IN ∈ C
(individual-related? IN I R) 〈IN , I〉 ∈ R

determining what follows from this information. A minimal mechanism for this is
via a set of queries, such as those given in Table 7.4. A query is answered by the
system by determining if the meaning of the query is implied by the information
that has been told to the system.

The interface described above is sufficient for determining the contents of a knowl-
edge base but only in the theoretical sense. For reasonable access to the information
in a knowledge base a richer interface is required. One part of this richer access
even really belongs in the basic interface, namely retrievals of taxonomy information.
The interface in Table 7.5 provides a simple interface to the taxonomy information
implicit in a description logic knowledge base. The meaning of the calls should
be obvious from their description, except perhaps the “-direct-” versions, which

Table 7.5. Taxonomy retrieval syntax.
(concept-descendants C)
(concept-offspring C)
(concept-ancestors C)
(concept-parents C)
(concept-instances C)
(concept-direct-instances C)
(role-descendants R)
(role-offspring R)
(role-ancestors R)
(role-parents R)
(individual-types IN)
(individual-direct-types IN)
(individual-fillers IN R)



276 D. L. McGuinness, P. F. Patel-Schneider

Table 7.6. UnTell syntax.
(undefine-concept CN)
(undefine-role RN)
(undefine-attribute AN)
(un-tell-instance IN C)
(un-tell-related IN I R)

return the concepts, individuals, or roles that are directly related to the query, i.e.,
that have no intervening concept or role.

Another basic service that is missing from above interface is the ability to remove
information from the knowledge base. This is not the ability to perform arbitrary
changes to the implicit information represented by the knowledge base. Instead it is
just the ability to “un-tell” information that had been previously told to the system.
A basic interface for this purpose is given in Table 7.6. There may be restrictions on
what can be un-told, such as requiring that concepts that are currently mentioned
in the definition of other concepts cannot be removed from the knowledge base.

7.3 Advanced application access

The basic interface described above provides only minimal access to a description
logic knowledge base. Effective access requires a number of augmentations to the
basic interface.

One of the most important augmentations has to do with defining a complete
application programming interface. The basic interface assumes that the system
is implemented in a language like Lisp, where there is a simple way of creating
descriptions and other values for the various operations and there is a mechanism
for returning values of any type. This was acceptable when systems and applications
were all implemented in Lisp, but this is no longer the case.

A complete application programming interface must then provide a syntax for
creating all the types of values that need to be passed to the representation system.
Further, it needs to provide or define mechanisms for returning values, particularly
compound values such as the sets of concepts that are returned by the taxonomic
retrieval operations.

7.3.1 Efficiency

Because the operations of the representation system may represent the largest re-
source consumption of an application, it is often necessary to know how expensive
various operations of the system may be. For example, it is often necessary to
know the usual resource consumption of the most-frequently called operations of



From Description Logic Provers to Knowledge Representation Systems 277

the knowledge representation system or those operations that are called at critical
time in the operation of the whole system.

The Classic family has been particularly aggressive in ensuring that queries to
the system are fast, working under the assumption that the most-common opera-
tions are queries. Most queries in Classic are simply retrievals of data stored by
the system, as Classic responds to the addition of knowledge by computing most
of its consequences. Further, the performance of the addition of knowledge to the
system is optimized over the retraction or change of knowledge.

Classic achieves these characteristics of fastest queries, fast additions, and slower
retractions and changes by retaining data structures that record the current set of
consequences and also record, on a fairly granular level, which knowledge affects
other knowledge. This is not full truth-maintenance data, which would be pro-
hibitively expensive to compute (and store), but is just enough to make additions
cheap. It also serves to make retractions and changes somewhat cheaper than they
otherwise would be, but this effect is much less than the change in the speed up
additions of knowledge.

7.3.2 Wide application programming interface

In the vast majority of applications, the knowledge representation system has to
serve as a tightly integrated component of a much larger overall system. For this
to be workable, the knowledge representation system must provide a full-featured
interface for the use of the rest of the system.

The NeoClassic system, which is programmed in C++, and is designed to be part
of a larger C++program, provides a very wide application programming interface.
In addition to the above interface, there is a large interface that lets the rest of the
system receive and process the actual data structures used inside NeoClassic to
represent knowledge, but without allowing these structures to be modified outside
of NeoClassic.1 This interface allows for much faster access to the knowledge
stored by NeoClassic, as many accesses just retrieve fields from a data structure.
Further, direct access to data structures allows the rest of the system to keep track
of knowledge from NeoClassic without having to keep track of a “name” for the
knowledge querying using this name. (In fact, it is in this way possible to dispense
with any notion of querying by name.)

There are also ways to obtain the data structures that are used by NeoClas-
sic for other purposes, including explanation. We have used this facility to write
graphical user interfaces to present explanations and other information.

An additional interface that is provided by both Lisp Classic and NeoClassic
1 Of course, as C++does not have an inviolable type system, there are mechanisms to modify these struc-

tures. It is just that any well-typed access cannot.



278 D. L. McGuinness, P. F. Patel-Schneider

is a notification mechanism, or hooks. This mechanism allows programmers to write
functions that are called when particular changes are made in the knowledge stored
in the system or when the system infers new knowledge from other knowledge.
Hooks for the retraction of knowledge from the system are also provided. These
hooks allow, among other things, the creation of a graphical user interface that
mirrors (some portion or view of) the knowledge stored in the representation system.

Others in the knowledge representation community have recognized the need for
common APIs, (e.g., the Generic Frame Protocol [Chaudhri et al., 1997] and the
Open Knowledge Base Connectivity [Chaudhri et al., 1998a]). Some systems em-
brace the notion of loading many different forms of knowledge bases and accept
wrapper specifications for other source formats and APIs. For example, Ontolin-
gua has implemented capability for loading a number of formats including Classic,
OKBC, ANSI KIF, KIF 3.0, CML, CLIPS, Ontolingua, Protégé, Snark, and
DAML+OIL. It also provides the ability to dump frames in multiple formats such
as OKBC, Classic, CLOS, CML, Ontolingua, and DAML+OIL and it has also
been made interoperable with at least two reasoners including one in lisp and one
in java.

7.3.3 Remote and concurrent access

The standard computing environment is becoming more and more distributed. If a
description logic knowledge representation system is to be part of this environment
it must allow effective remote access. There are several mechanisms for allowing re-
mote access, including applications that run on the same machine as the description
logic knowledge representation system but themselves provide a remote access mech-
anism. Examples of such applications are the wines [Brachman et al., 1991] and
stereo configuration demonstration systems [McGuinness et al., 1995] mentioned
later in this chapter.

The description logic knowledge representation system itself can also directly pro-
vide a remote access mechanism. This can be as simple as providing the system
with a pipe-like interface where clients can send a sequence of commands to the sys-
tem from remote machines, and receive responses via the same pipe. NeoClassic
provides this sort of simple remote access mechanism.

A more complicated remote access mechanism would be to provide a CORBA in-
terface to the system. This kind of access was proposed by Bechhofer et al. [1999],
Their interface gives a CORBA layering around a tell-and-ask interface. Providing
a wider CORBA access to description logic knowledge representation systems, such
as providing CORBA access to the actual data structures of the system, is more
difficult, as the CORBA mechanism for dealing with recursive objects is annoy-



From Description Logic Provers to Knowledge Representation Systems 279

ing. Nevertheless, an effective remote access mechanism should provide the same
functionality as is desired for local access.

If remote access to a description logic knowledge representation system is pro-
vided, then the issue of concurrent access becomes vital. (This is not to say that
concurrent access is not of interest if the system does not allow remote access.) The
interesting issues with respect to concurrent access involve simultaneous access to
the same repository of knowledge. Most of the issues with respect to concurrent ac-
cess are the same as concurrent access to databases, including locking and providing
transactions. In fact, there have been informal proposals to use a database system
to store the information in a description logic knowledge representation system like
Classic just so as to piggyback on the facilities for concurrent access provided by
the database system.

The remote interface proposal mentioned above provides a limited form of trans-
actions, basically allowing clients to batch up a collection of updates to a knowledge
base and apply them all at once as an atomic transaction. This interface, however,
does not provide any mechanism to abort transactions or to provide a local view of
the knowledge base during the execution of a transaction.

At least one other knowledge representation system has dealt with the notion of
concurrent access by leveraging the notion of sessions. Ontolingua allows users
to log in to a particular session that may already be opened by a previous user.
All users logged into the same session see the same version of the knowledge base.
A more sophisticated approach to concurrent access and knowledge base editing is
embodied in OntoBuilder [Das et al., 2001]. In this system, users can not only
do something similar to sharing a session, but the implementation also facilitates
collaboration through dialogue with other users currently signed on to the same
ontology and allows locking of concepts for updates.

7.3.4 Platforms

Another important access aspect concerns the platforms on which the knowledge
representation system runs. This encompasses not only the machines and operating
systems, but also the language in which the system is written (if it is visible), the
version of the libraries that the system uses, and the mechanism for linking to the
system. Many applications have needs for a particular operating system or language,
and cannot utilize tools not available in this context.

Some description logics like Classic have been made available on a reasonable
number of platforms. The underlying language of a member of the Classic family
is visible, not just because of the application programming interface which is, of
necessity, language-specific, but also because programmers can write functions to



280 D. L. McGuinness, P. F. Patel-Schneider

extended the expressive power of the system, and these functions have to be written
in the underlying language of the system.

Classic is currently available in two different languages: Lisp and C++. The
C++member is the more recent, and the reimplementation used C++precisely to
make Classic available for a larger number of applications. This was done even
though C++is not the ideal language in which to write a representation system.

The members of the Classic family have also been written in a platform-
independent manner. This has required not using some of the nicer capabilities
of the underlying language or of particular operating systems. For example, Neo-
Classic does not use C++exceptions, partly because few C++compilers supported
this extension to the language. Lisp-Classic runs on various Lisp implementa-
tions and on various operating systems, including most versions of Unix, MacOS,
and Windows. NeoClassic runs under four C++compilers and on both Unix and
Windows NT.

With the influence of the web and more distributed development environments,
it may be expected that more description logics may be made available on multiple
platforms and may be integrated into more hybrid environments. One example of
another knowledge representation system that found a need to do this is the Chi-
maera Ontology Evolution Environment [McGuinness et al., 2000b]. This system
has been connected to Ontolingua for ontology editing and simple inference, a
lisp-based reasoner for some diagnostics, and a hybrid java-based reasoning envi-
ronment that supports both first order logic reasoning as well as special purpose
reasoning for the DAML+OIL description logic.

7.4 Advanced human access

7.4.1 Explanation

Many research areas which focus on deductive systems (such as expert systems
and theorem proving) have determined that explanation modules are required for
even simple deductive systems to be usable by people other than their designers.
Description Logics have at least as great a need for explanation as other deductive
systems since they typically provide similar inferences to those found in other fields
and also support added inferences particular to description logics. They provide a
wide array of inferences [Borgida, 1992b] which can be strung together to provide
complicated chains of inferences. Thus conclusions may be puzzling even to experts
in description logics when application domains are unfamiliar or when chains of
inference are long. Additionally, naive users may require explanations for deductions
which may appear simple to knowledgeable users. Both sets of needs became evident
in work on a family of configuration applications and necessitated an automatic
explanation facility.



From Description Logic Provers to Knowledge Representation Systems 281

The main inference in description logics is subsumption—determining when mem-
bership in one class necessitates membership in another class. For example, Person
is subsumed by Mammal since anything that is a member of the class Person must be
a member of the class Mammal. Almost every inference in description logics can be
rewritten using subsumption relationships and thus subsumption explanation forms
the foundation of an explanation module [McGuinness and Borgida, 1995].

Although subsumption in most implemented description logics is calculated pro-
cedurally, it is preferable to provide a declarative presentation of the deductions
because a procedural trace typically is very long and is littered with details of
the implementation. A declarative explanation mechanism which relies on a proof
theoretic representation of deductions may be used as a framework. Such a mecha-
nism has been specified [McGuinness, 1996] and implemented for Classic and later
specified for ALN [Baader et al., 1999a].

All the inferences in a description logic system can be represented declaratively
by a proof rules which state some (optional) antecedent conditions and deduce some
consequent relationship. The subsumption rules may be written so that they have
a single subsumption relationship in the denominator. For example, if Person is
subsumed by Mammal, then it follows that something that has all of its children
restricted to be Persons must be subsumed by something that has all of its children
restricted to be Mammals. This can be written more generally (with C representing
Person, D representing Mammal, and R representing child) as the ∀ restriction rule
below:

All restriction
` C v D

` ∀R.C v ∀R.D

Using a set of proof rules that represent description logic inferences, it is possible
to give a declarative explanation of subsumption conclusions in terms of proof rule
applications and appropriate antecedent conditions. This basic foundation can be
applied to all of the inferences in description logics, including all of the inferences for
handling constraint propagation and other individual inferences. There is a wealth
of techniques that one can employ to make this basic approach more manageable
and meaningful for users [McGuinness and Borgida, 1995; McGuinness, 1996].

Expressive description logic-based systems may require a large number of proof
rules. If one is interested in limiting both explanation implementation work and
also limiting the size of explanations, it is be beneficial to prune the number of
inferences to be explained. In one configuration family of applications [McGuinness
and Wright, 1998b] the help desk logs were logged and analyzed to determine the
most questions that related to explanation. These inferences included inheritance
(if A is an instance of B and B is a subclass of C, then A “inherits” all the properties
of C), propagation (if A fills a role R on B, and B is an instance of something which



282 D. L. McGuinness, P. F. Patel-Schneider

is known to restrict all of its fillers for the R role to be instances of D, then A is an
instance of D), rule firing (if a is an instance of E and E has a rule associated with
it that says that anything that is an E must also be an F , then a is an instance
of F ), and contradiction detection (e.g., I can not be an instance of something
that has at least 3 children and at most 2 children). In the initial development
version, explanation was only provided for these inferences in an effort to minimize
development costs, resulting in a quite useful explanation mechanism with much
less effort than a full explanation system. (The two current implementations of
explanation in Classic contain complete explanation.) One demonstration system
[McGuinness et al., 1995] incorporates special handling for the most heavily used
inferences providing natural language templates for presentations of explanations
aimed at lay people.

7.4.2 Error handling

Since one common usage of deductive systems is for contradiction detection, han-
dling error reporting and explanation is critical to usability. This usage is com-
mon in applications where object descriptions can easily become over-constrained.
For example, in the home theater system application, one could generate a non-
contradictory request for a high quality stereo system that costs under a certain
amount. The description could later become inconsistent as more information is
added. For example, a required high-quality, expensive speaker set could violate
a low total price constraint. Understanding evolving contradictions such as this
challenges many users and leads them to request special error explanation support.
Informal studies with internal users and external academic users indicate that ade-
quate error support is crucial to the usability of the system.

Error handling could be viewed simply as a special case of inference where the
conclusion is that some object is found to be described by the a special concept
typically called bottom or nothing. For example, a concept is incoherent if it has
conflicting bounds on some role:

Bounds Conflict
` C v (>m r) ` C v (6 n r) n < m

` C v ⊥

If an explanation system is already implemented to explain proof theoretic infer-
ence rules, then explaining error conditions is almost a special case of explaining
any inference. There are two issues that are worth noting, however. The first is that
information added to one object in the knowledge base may cause another object
to become inconsistent. In fact, information about one object may impact another
series of objects before a contradiction is discovered at some distant point along
an inference chain. Typical description logic systems require consistent knowledge



From Description Logic Provers to Knowledge Representation Systems 283

bases, thus whenever they discover a contradiction, they use some form of truth
maintenance to revert to a consistent state of knowledge, removing conclusions that
depend on the information removed from the knowledge base. Thus, it is possi-
ble, if not typical, for an error condition to depend upon some conclusion that was
later removed. A simple minded explanation based solely on information that is
currently in the knowledge base would not be able to refer to these removed conclu-
sions. Thus, any explanation system capable of explaining errors will need access
to the current state of the knowledge base as well as to its inconsistent state.

Because of the added complexity resulting from the distinction between the cur-
rent (consistent) state and the inconsistent state of the knowledge base and because
of the importance of error explanation, we believe system designers will want to
support special handling of error conditions. For example, in a number of situa-
tions surveyed, users typically asked for explanations of a particular object property
or relationships between objects. Under error conditions, users had more trouble
identifying an appropriate query to ask. This suggests that special error support
should be introduced. In Classic, for example, an automatic error explanation
option is generated upon contradiction detection. This way the user requires no
knowledge (other than the explanation error command name) in order to ask for
help.

Another issue of importance to error handling is the completeness or incomplete-
ness of the system. If a system is incomplete then it may miss deductions. Thus, it
is possible for an object to be inconsistent if all of the logically implied deductions
were to be made but, because the system was incomplete, it missed some of these
deductions and thus the object remains consistent in the knowledge base. In order
for users to be able to use a system that is incomplete, they may need to be able
to explain not only error deductions but deductions that were missed because of
incomplete reasoning. An approach that completes the reasoning with respect to a
particular aspect of an object is described in [McGuinness, 1996, Chapter 5]. Given
the completed information, the system can then explain missed deductions.

7.4.3 Pruning

If a knowledge representation system makes it easy to generate and reason with
complicated objects, users may find naive object presentations to be much too
complex to handle. In order to make a system more usable, there needs to be some
way of limiting the amount of information presented about complicated objects. For
example, in the stereo demonstration application, a typical stereo system description
may generate four pages of printout. The information contained in the description
may be clearly meaningful information such as price ranges and model numbers for
components but it may also contain descriptions of where the component might be



284 D. L. McGuinness, P. F. Patel-Schneider

displayed in the rack and which superconcepts are related to the object. In certain
contexts it is desirable to print just model numbers and prices, and in other contexts
it is desirable to print price ranges of components. We believe it is critical to provide
support for encoding domain independent and domain dependent information which
can be used along with contextual information to determine what information to
print or explain. As one example, we consider some of the knowledge bases written
for the DARPA High Performance Knowledge Base project. This project includes
a very general upper level ontology with many slots defined on many of the classes.
Most objects in the system inherit a large number of slots from upper ontology
classes and it is not uncommon for normalized objects to have hundreds of slots
associated with them even though they only have a couple of properties defined on
them in the local knowledge bases.

Knowledge representation systems faced with information overload need to take
some approach to filtering. One of the simplest approaches allows a specification on
roles concerning whether they should be displayed on objects or not. This may work
for homogeneous knowledge bases where role information is uniformly interesting
or uninteresting. Our experience is however, that context needs to be taken into
account in more heterogeneous knowledge base applications. One example imple-
mentation that allows context and domain dependent information to be considered
along with domain independent information is implemented in Classic. A meta
language is defined for describing what is interesting to either print or explain on
a class by class basis. Any subclass or instance of the class will then inherit the
meta description and thus will inherit “interestingness” properties from its parent
classes. The meta language essentially captures the expressive power of the base
description logic with some carefully chosen epistemic operators to allow contextual
information (such as known fillers or closed roles) to impact decisions on what to
print.

The meta language has been used to reduce object presentation and explanation
by an order of magnitude in at least one application [McGuinness et al., 1995]. This
reduction was required for the application to be able to include object presentation.
The algorithms of the basic approach are included in [McGuinness, 1996], the theory
of a generalized approach are presented in [Borgida and McGuinness, 1996] and
further analyzed in [Baader et al., 1999a].

7.4.4 Knowledge acquisition

If an application is expected to have a long life-cycle, then acquisition and main-
tenance of knowledge become major issues for usability. There are two kinds of
knowledge acquisition which are worth considering: (i) acquisition of additional
knowledge once a knowledge base is in place, and (ii) acquisition of original do-



From Description Logic Provers to Knowledge Representation Systems 285

main knowledge. A complete environment will address both concerns, however the
original acquisition of knowledge is a much more general and difficult problem and
conveniently enough, is not the activity that many users will find themselves doing
repeatedly while maintaining a project.

We observe that with knowledge of the domain and appropriate analysis of evo-
lution, it is possible to build a knowledge evolution environment suitable for non-
experts to use for extending knowledge bases. One such project considered the
evolution support environment for configurators. The specific domain and usage
patterns were analyzed, and it was found that only certain classes had new sub-
classes added to them as product knowledge evolved. It was also found that in-
stances were typically populated in particular patterns. A special purpose interface
was developed for a family of configurators that exploited these findings and sup-
ported new configurator application development by non-experts [McGuinness and
Wright, 1998b]. Also, in related work, Gil and Melz [1996] have analyzed planning-
based uses of another description logic-based system that systematically supports
knowledge base evolution with respect to the known plan usage.

A more general problem that does not rely on domain or reasoning knowledge has
been addressed in the editor work [Paley et al., 1997] for the general frame protocol
and also in editor work for collaborative generation and maintenance of ontologies
by non experts in the Collaborative Topic Builder component of FindUR [McGuin-
ness, 1998] and recently in Chimaera work [McGuinness et al., 2000b] for merging,
analyzing, and maintaining ontologies. The general work, of course, is broader
yet shallower with respect to reasoning implications. In the FindUR collaborative
topic builder environment, simple hierarchies of node names (with role filler and
value restriction information) is used to support query expansion to provide more
intelligent web searching. In order to deploy this broadly, a web-based distributed
ontoloty editor was required to allow non-experts to input, modify, and maintain
background ontologies. The basic functionality for this interface follows the same re-
quirements specified in Section 7.2 although this particular implementation limited
some of the interface specifications according to expected usage patterns. For ex-
ample, in the medical deployments [McGuinness, 1999] of FindUR, it was expected
that all of the roles that were to be used had been defined and thus pull down
lists of these roles were hardcoded into the interface and new role specification was
not one of the exposed functionalities in the GUI. It also allows importing of seed
ontologies and supports contradiction detection from ontology input. Chimaera’s
environment takes the analysis task to a much more detailed level and it provides
a number of different ways of not only detecting explicit contradictions but also
possible contradictions and possible term merges.



286 D. L. McGuinness, P. F. Patel-Schneider

7.5 Other technical concerns

The computer science concerns that affect the suitability of a knowledge represen-
tation system have to do with the behavior of the system as a computer program or
routine, ignoring its status as a representer of knowledge. The most-studied aspect
of this collection of concerns has to do with the computational analysis of the basic
algorithms embodied in the system, in particular their worst-case complexity. Be-
cause this worst-case complexity has been so well studied, we will not say anything
about it further, except to state that it is important in determining the suitability
of a knowledge representation system for particular task, notably tasks that need a
performance guarantee.

7.6 Public relations concerns

Researchers sometimes underestimate the varied public relations aspects involved
with making a system usable. Barriers to usability come in many forms: potential
users who are unaware of a system’s existence will not use it; potential users who
do not understand how a system can meet the users needs are unlikely to use it;
potential users who do not have enough understanding to visualize an abstract solu-
tion to their problem using a new system are unlikely to depend on the new system
over tools they understand and can predict; and finally potential users who have a
limited set of approved tools which does not include the new system are unlikely go
to the effort of getting the new system approved for their internal use. In order to
address these issues, description logic system designers need to devise ways to make
their systems known to likely users, educate those users about the possible uses,
provide support for teaching users how to use them for some standard and lever-
ageable uses, and either obtain approval for their systems or provide ammunition
for users to gain approval.

In experiences with Classic, the following tools have been employed to overcome
the above stated barriers to usability.

Beyond the standard research papers, users demand usage guidelines aimed at
non-PhD researchers. A paper that provides a running (executable) example on
how to use the system is most desirable, such as [Brachman et al., 1991]. This
paper also tries to provide guidance on when a description logic-based system might
be useful, what its limitations are, and how one might go about using one in a
simple application. A take off of that paper was done as the basis of a tutorial on
building ontologies in other knowledge representation systems including Protégé
and Ontolingua [Noy and McGuinness, 2000].

A demonstration system is also of great utility as it helps users understand a
simple reasoning paradigm and provides a prototyping domain for showing off novel
functionality which exploits the strengths of the underlying system. In the Classic



From Description Logic Provers to Knowledge Representation Systems 287

project a number of demonstration systems were developed, including a simple ap-
plication that captures “typical” reasoning patterns in an accessible domain. This
one system has been used in dozens of universities as a pedagogical tool and test sys-
tem. While this application was appropriate for many students, an application more
closely resembling some actual applications was needed to (i) give more meaningful
demonstrations internally and to (ii) provide concrete suggestions of new function-
ality that developers might consider using in their applications. This led to a more
complex application with a fairly serious graphical interface [McGuinness et al.,
1995]. Both of these applications have been adapted for the web.1 It was only when
a demonstration system that was clearly isomorphic to the developer’s applications
was available that there could be effective providing of clear descriptions and im-
plemented examples of the functionality that we believed should be incorporated
into development applications.

Interactive courses are also of benefit in training potential users in how to use a
description-logic based knowledge representation system. Several courses [McGuin-
ness et al., 1994; Abrahams et al., 1996] on how to use Classic have been devel-
oped, including one from a university for course use, which includes a set of five
running assignments to help students gain experience using the system. Other gen-
eral description logic courses can be found on the Description Logic web site at
http://www.dl.kr.org/.

For a system to be used in the business community, it has to satisfy their de-
mand for common standard implementation languages, reasonable support, and
standard platform toolkits. Some description logic implementations, such as Clas-
sic, attempted to meet this need by providing an implementation in C while still
maintaining the lisp research version. This later proved problematic to maintain
and the decision was made to provide an implementation in C++that was to meet
both developers and implementers needs. Interestingly enough, years later though
the lisp version is the one that appears to be most heavily used. More details of
the evolution of that of usability of that system can be found in [Brachman et al.,
1999].

7.7 Summary

Although a knowledge representation system must have sufficient expressive power
and appropriate computational complexity to be considered for use in applications,
there are many other issues that also determine whether it will be used. These
issues involve access to the knowledge stored in the system, such as explanation
and presentation of the knowledge, other technical issues, such as efficiency and
1 The web version of the wines demonstration system was provided by Chris Welty and is available at
http://untangle.cs.vassar.edu/wine-demo/index.html.



288 D. L. McGuinness, P. F. Patel-Schneider

programming interfaces, and non-technical issues, such as publicity and demos. If
these issues are not addressed appropriately, a knowledge representation system will
not be used in real applications.


