Description Logics

Structural Description Logics

Enrico Franconi

franconi@inf.unibz.it
http://www.inf.unibz.it/~franconi

Faculty of Computer Science, Free University of Bozen-Bolzano

Description Logics

- A logical reconstruction and *unifying* formalism for the representation tools
 - Frame-based systems
 - Semantic Networks
 - Object-Oriented representations
 - Semantic data models
 - Ontology languages
 - . . .
- A structured fragment of predicate logic
- Provide theories and systems for *expressing* structured information and for *accessing* and *reasoning* with it in a principled way.

Applications

Description logics based systems are currently in use in many applications.

- Configuration
- Conceptual Modeling
- Query Optimization and View Maintenance
- Natural Language Semantics
- I3 (Intelligent Integration of Information)
- Information Access and Intelligent Interfaces
- Terminologies and Ontologies
- Software Management
- Planning

A formalism

- Description Logics formalize many *Object-Oriented* representation approaches.
- As such, their purpose is to disambiguate many imprecise representations.

Frames or Objects

- Identifier
- Class
- Instance
- Slot (attribute)
 - Value
 - Identifier
 - Default
 - Value restriction
 - Type
 - Concrete Domain
 - Cardinality
 - Encapsulated method

Ambiguities: classes and instances

```
Person : AGE : Number,
SEX : M, F,
HEIGHT : Number,
WIFE : Person.
```

<i>john</i> : AGE : 29,	
SEX: M,	
HEIGHT: 76,	
WIFE: mary.	

Ambiguities: incomplete information

29'er: AGE: 29, SEX: M, HEIGHT: Number, WIFE: Person.

<i>john</i> : AGE : 29,	
SEX: M,	
HEIGHT : Number,	
WIFE : Person.	

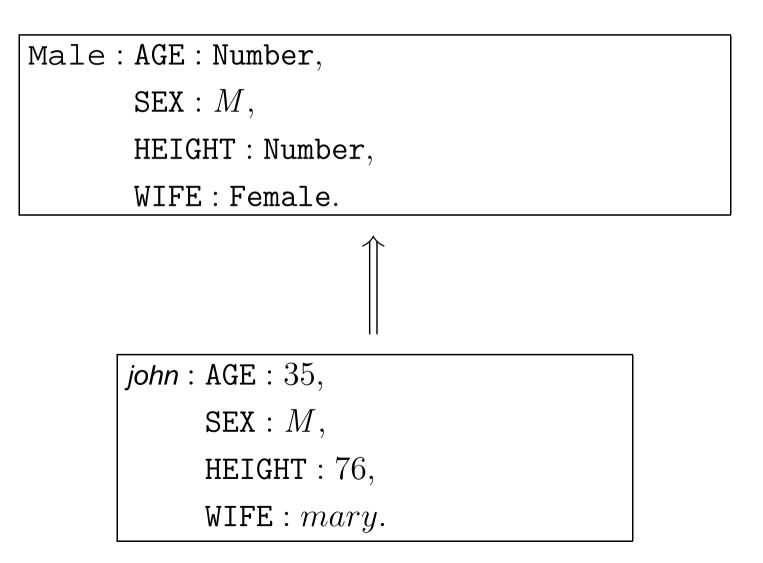
Ambiguities: is-a

Sub-class:

Person: AGE: Number,		
SEX: M, F,		
HEIGHT : Number,		
WIFE : Person.		
\bigwedge		
Male: AGE: Number,		
$\mathtt{SEX}:M,$		
HEIGHT : Number,		
WIFE:Female.		

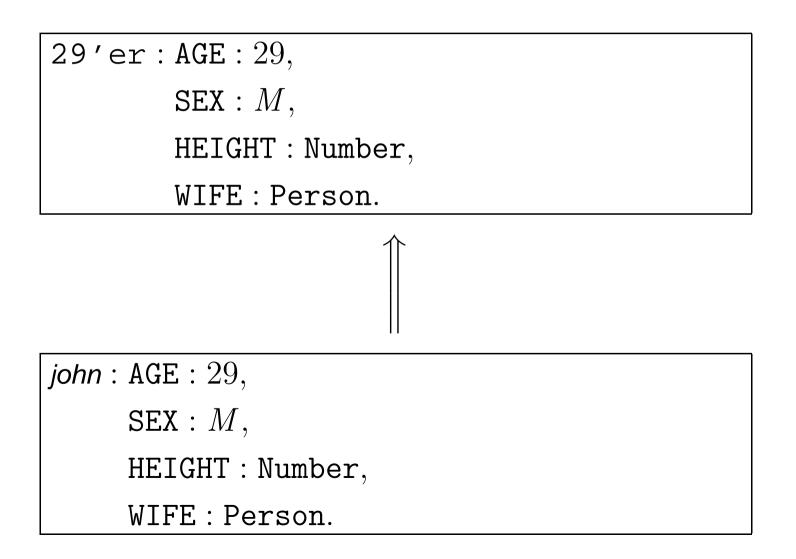
Ambiguities: is-a

Instance-of:



Ambiguities: is-a

Instance-of:



Implicit relation:

```
 \begin{array}{l} \textit{john}: \text{AGE}: 35, \\ \text{SEX}: M, \\ \text{HEIGHT}: 76, \\ \underline{\text{WIFE}}: mary. \end{array}
```

```
mary : AGE : 32,
SEX : F,
HEIGHT : 59,
HUSBAND : john.
```

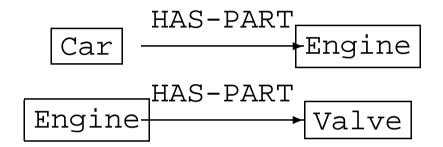
Explicit relation:

 $\begin{array}{l} \textit{john}: \texttt{AGE}: 35,\\ \texttt{SEX}: M,\\ \texttt{HEIGHT}: 76. \end{array}$

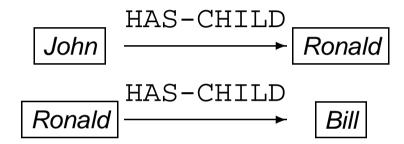
 $\begin{array}{l} \textit{mary}: \texttt{AGE}: 32,\\ \texttt{SEX}: F,\\ \texttt{HEIGHT}: 59. \end{array}$

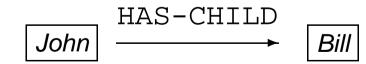
m-j-family : <u>WIFE</u> : mary, <u>HUSBAND</u> : john.

Special relation:



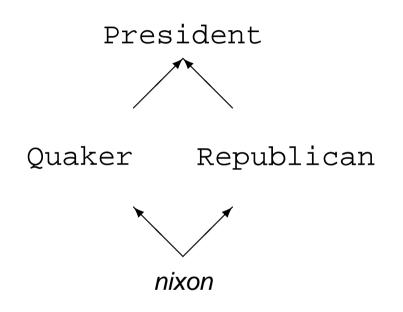
Normal relation:





Ambiguities: default

The Nixon diamond:



Quakers are pacifist, Republicans are not pacifist.

 \implies Is Nixon pacifist or not pacifist?

What is the exact meaning of:

What is the exact meaning of:

• Every frog is just green

What is the exact meaning of:

- Every frog is just green
- Every frog is also green

What is the exact meaning of:

- Every frog is just green
- Every frog is also green
- Every frog is of some green

What is the exact meaning of:

- Every frog is just green
- Every frog is also green
- Every frog is of some green
- There is a frog, which is just green

• . . .

What is the exact meaning of:

- Every frog is just green
- Every frog is also green
- Every frog is of some green
- There is a frog, which is just green

• . . .

• Frogs are typically green, but there may be exceptions

False friends

- The meaning of object-oriented representations is logically very ambiguous.
- The appeal of the graphical nature of object-oriented representation tools has led to forms of reasoning that do not fall into standard logical categories, and are not yet very well understood.
- It is unfortunately much easier to develop some algorithm that appears to reason over structures of a certain kind, than to *justify* its reasoning by explaining what the structures are saying about the domain.

A structured logic

- Any (basic) Description Logic is a fragment of FOL.
- The representation is at the *predicate level*: no variables are present in the formalism.
- A Description Logic theory is divided in two parts:
 - the definition of predicates (*TBox*)
 - the assertion over constants (*ABox*)
- Any (basic) Description Logic is a subset of \mathcal{L}_3 , i.e. the function-free FOL using only at most *three* variable names.

Why not FOL

If FOL is directly used without additional restrictions then

- the structure of the knowledge is destroyed, and it can not be exploited for driving the inference;
- the expressive power is too high for obtaining decidable and efficient inference problems;
- the inference power may be too low for expressing interesting, but still decidable theories.

Structured Inheritance Networks: KL-ONE

- Structured Descriptions
 - corresponding to the complex relational structure of objects,
 - built using a restricted set of epistemologically adequate constructs
- distinction between conceptual (*terminological*) and instance (*assertional*) knowledge;
- central role of automatic classification for determining the subsumption i.e., universal implication – lattice;
- strict reasoning, no defaults.

Types of the TBox Language

• Concepts – denote entities

(unary predicates, classes)

Example: Student, Married

 $\{ x \mid \texttt{Student}(x) \}, \\ \{ x \mid \texttt{Married}(x) \}$

Roles – denote properties

(binary predicates, relations)

Example: FRIEND, LOVES

```
 \{ \langle x, y \rangle \mid \text{FRIEND}(x, y) \}, \\ \{ \langle x, y \rangle \mid \text{LOVES}(x, y) \}
```

Concept Expressions

Description Logics organize the information in classes – *concepts* – gathering homogeneous data, according to the relevant common properties among a collection of instances.

Example:

 $\texttt{Student} \sqcap \exists \texttt{FRIEND}.\texttt{Married}$

```
 \begin{aligned} & \{x \mid \texttt{Student}(x) \land \\ & \exists y \texttt{.FRIEND}(x, y) \land \texttt{Married}(y) \} \end{aligned}
```

A note on λ 's

In general, λ is an explicit way of forming *names* of functions:

 λx . f(x) is the function that, given input x, returns the value f(x)

The λ -conversion rule says that:

$$(\lambda x. f(x))(a) = f(a)$$

Thus, λx . $(x^2 + 3x - 1)$ is the function that applied to 2 gives 9: $(\lambda x$. $(x^2 + 3x - 1))(2) = 9$

We can give a name to this function, so that:

$$f_{231} \doteq \lambda x. \ (x^2 + 3x - 1)$$

 $f_{231}(2) = 9$

λ to define predicates

Predicates are special case of functions: they are *truth* functions. So, if we think of a formula P(x) as denoting a truth value which may vary as the value of x varies, we have:

 λx . P(x) denotes a function from domain individuals to truth values.

In this way, as we have learned from FOL, P denotes exactly the set of individuals for which it is true. So, P(a) means that the individual a makes the predicate P true, or, in other words, that a is in the extension of P.

For example, we can write for the unary predicate Person:

```
Person \doteq \lambda x. Person(x)
```

which is equivalent to say that Person denotes the set of persons:

$$\begin{split} & \operatorname{Person} \, \rightsquigarrow \, \left\{ x \mid \, \operatorname{Person}(x) \right\} \\ & \operatorname{Person}^{\mathcal{I}} = \left\{ x \mid \, \operatorname{Person}(x) \right\} \\ & \operatorname{Person}(john) \quad \operatorname{IFF} \ john^{\mathcal{I}} \in \operatorname{Person}^{\mathcal{I}} \end{split}$$

In the same way for the *binary* predicate FRIEND:

$$\begin{aligned} \text{FRIEND} &\doteq \lambda x, y \text{.} \ \text{FRIEND}(x, y) \\ \text{FRIEND}^{\mathcal{I}} &= \{ \langle x, y \rangle \mid \ \text{FRIEND}(x, y) \} \end{aligned}$$

The functions we are defining with the λ operator may be parametric:

$$\begin{split} & \texttt{Student} \sqcap \texttt{Worker} = \lambda x. \ (\texttt{Student}(x) \land \texttt{Worker}(x)) \\ & (\texttt{Student} \sqcap \texttt{Worker})^{\mathcal{I}} = \{x \mid (\texttt{Student}(x) \land \texttt{Worker}(x)) \\ & (\texttt{Student} \sqcap \texttt{Worker})^{\mathcal{I}} = \texttt{Student}^{\mathcal{I}} \cap \texttt{Worker}^{\mathcal{I}} \end{split}$$

(Verify as exercise)

Concept Expressions

```
(\texttt{Student} \sqcap \exists \texttt{FRIEND}.\texttt{Married})^{\mathcal{I}}
```

```
(\texttt{Student})^{\mathcal{I}} \cap (\exists \texttt{FRIEND}.\texttt{Married})^{\mathcal{I}}
```

```
 \begin{aligned} &\{x \mid \texttt{Student}(x)\} \cap \\ &\{x \mid \exists y.\texttt{FRIEND}(x,y) \land \texttt{Married}(y)\} \end{aligned}
```

=

=

=

```
\begin{array}{l} \{x \mid \texttt{Student}(x) \land \\ \exists y \texttt{.FRIEND}(x, y) \land \texttt{Married}(y) \} \end{array}
```

Objects: classes

Student

Person	
name:	[String]
address:	[String]
enrolled:	[Course]

$$\begin{split} \{x \mid \texttt{Student}(x)\} &= \{x \mid \texttt{Person}(x) \land \\ & (\exists y. \ \texttt{NAME}(x, y) \land \texttt{String}(y)) \land \\ & (\exists z. \ \texttt{ADDRESS}(x, z) \land \texttt{String}(z)) \land \\ & (\exists w. \ \texttt{ENROLLED}(x, w) \land \texttt{Course}(w)) \, \} \end{split}$$

 $\texttt{Student} \doteq \texttt{Person} \sqcap$

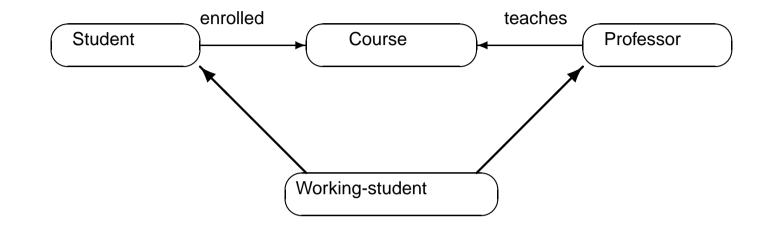
- \exists NAME.String \sqcap
- $\exists \text{ADDRESS.String} \sqcap$
- ∃ENROLLED.Course

Objects: instances

s1: Student	
name:	"John"
address:	"Abbey Road"
enrolled:	cs415

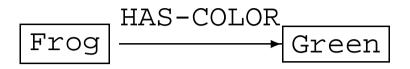
```
\begin{array}{l} \texttt{Student(s1)} \land \\ \texttt{NAME(s1, "john")} \land \texttt{String("john")} \land \\ \texttt{ADDRESS(s1, "abbey-road")} \land \texttt{String("abbey-road")} \land \\ \texttt{ENROLLED(s1, cs415)} \land \texttt{Course(cs415)} \end{array}
```

Semantic Networks



 $\texttt{Student}(x) \land \texttt{Professor}(x)$

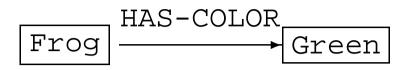
Quantification



- Frog ⊑ ∃HAS-COLOR.Green:
 Every frog is also green
- Frog ⊑ ∀HAS-COLOR.Green:
 Every frog is just green
- Frog \sqsubseteq \forall HAS-COLOR.Green Frog(x), HAS-COLOR(x, y):

There is a frog, which is just green

Quantification: existential



Every frog is also green

```
Frog \sqsubseteq \exists HAS-COLOR.Green
\forall x. Frog(x) \rightarrow
\exists y. (HAS-COLOR(x, y) \land Green(y))
```

Exercise: is this a model?

Frog(*oscar*), Green(*green*),

HAS-COLOR(oscar,green),

Red(*red*),

```
HAS-COLOR(oscar, red).
```

Quantification: universal

Every frog is only green

Frog $\sqsubseteq \forall HAS-COLOR.Green$ $\forall x. Frog(x) \rightarrow$ $\forall y. (HAS-COLOR(x, y) \rightarrow Green(y))$

Exercise: is this a model?arFrog(oscar), Green(green),F:HAS-COLOR(oscar, green),AcRed(red),HAS-COLOR(oscar, red).

and this? Frog(sing), AGENT(sing,oscar).

Analytic reasoning (intuition)

Person

subsumes

(Person with every male friend is a doctor)

subsumes

(Person with every friend is a

(Doctor with a specialty is surgery))

Analytic reasoning (intuition)

Person

subsumes

(Person with every male friend is a doctor)

subsumes

(Person with every friend is a

(Doctor with a specialty is surgery))

(Person with \geq 2 children)

subsumes

(Person with \geq 3 male children)

Analytic reasoning (intuition)

Person

subsumes

(Person with every male friend is a doctor)

subsumes

(Person with every friend is a

(Doctor with a specialty is surgery))

(Person with \geq 2 children)

subsumes

(Person with \geq 3 male children)

(Person with \geq 3 young children)

disjoint

```
(Person with \leq 2 children)
```