**Knowledge Representation: Description Logics** 

**Introductory Lecture** 

Enrico Franconi

franconi@inf.unibz.it
http://www.inf.unibz.it/~franconi

Faculty of Computer Science, Free University of Bozen-Bolzano

## Administrativia

• Home page:

http://www.inf.unibz.it/~franconi/dl/course/2004/

- Slides, lecture by lecture.
- Downloadable reference articles.
- Textbook:
  - "Description Logic Handbook", edited by F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University Press, 2002
- Suggested book on logic:
  - "The Essence of Logic", by John Kelly. Prentice Hall, 1997.
- Various scientific articles on the topic will be referenced during the course.

Systems  $\iff$  Agents



#### An agent

• • •

Consider, e.g., the task of designing an automated vehicle:

Percepts: video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Actions: steer, accelerate, brake, horn, speak/display, ...

Goals: safety, reach destination, maximize profits, obey laws, passenger comfort,

**Environment:** US urban streets, freeways, traffic, pedestrians, weather, customers, . . .

## **Rational Agents**

An Agent as Reasoning module of a Rational Agent.



## **Intelligent Agents**

- An Intelligent Agent is an entity that perceives and acts according to an internal declarative body of knowledge.
- Abstractly, an agent is a function from percept histories and internal declarative knowledge to actions:

 $f: \mathcal{P}^* \times \mathcal{K} \to \mathcal{A}$ 

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

## **Intelligent Agents**

- An Intelligent Agent is an entity that perceives and acts according to an internal declarative body of knowledge.
- Abstractly, an agent is a function from percept histories and internal declarative knowledge to actions:

 $f: \mathcal{P}^* \times \mathcal{K} \to \mathcal{A}$ 

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

- An Intelligent Agent as *Representation and Reasoning* module: a logic.
- Logic: a well formalized part of agent knowledge and reasoning.

#### **Non-Intelligent Agents: Reflex Agents**



## **Intelligent Information Agents**



# **Intelligent Information Agents**



The goal of an *Intelligent Information Agent* is to manage, process, and access Information – e.g., a database system.























#### **Reasoning at the Conceptual Level**



#### **Reasoning at the Conceptual Level**



implies

ItalianProf  $\implies$  LatinLover

## **Processing Knowledge = "Reasoning"**

Representation alone is not useful.

We want to be able to access represented knowledge and to process it.

- access alone is, in general, insufficient
- *implicit* knowledge has to be made explicit
- $\rightsquigarrow$  deduction methods
  - the results should only depend on the semantics ...
  - and not on accidental syntactic differences in representations

# Logic



A logic allows the axiomatization of the domain information, and the drawing of conclusions from that information.

- Syntax
- Semantics
- Logical inference = *reasoning*

## **Important Questions**

- Expressive Power of representation language
- $\rightsquigarrow$  able to *represent* the problem
  - Correctness of entailment procedure
- $\rightsquigarrow$  no false conclusions are drawn
  - **Completeness** of entailment procedure
- $\rightsquigarrow$  all correct conclusions are drawn
  - **Decidability** of entailment problem
- $\rightsquigarrow$  there exists a (terminating) algorithm to compute entailment
  - Complexity
- $\rightsquigarrow$  resources needed for computing the solution

# What is a Logic

Clearly distinguish the definitions of:

- the formal language
  - Syntax
  - Semantics
  - Expressive Power
- the reasoning problem (e.g., entailment)
  - Decidability
  - Computational Complexity
- the problem solving procedure
  - Soundness and Completeness
  - (Asymptotic) Complexity

# The ideal Logic

- Expressive
- With decidable reasoning problems
- With sound and complete reasoning procedures
- With efficient reasoning procedures possibly sub-optimal

## **Goals of research in the field**

- Study how **declarative knowledge** can be *formally defined* using a logic-based approach.
- Give a *computational* account to it, in order to reproduce it in a computing device.

## Main topics of the course

- Structural Description Logics
  - The need for a Logic in knowledge representation
  - Examples from Object-Oriented languages
  - The simplest Structural Description Logic: FL-
- Propositional Description Logics
  - Adding Expressivity to Description Logics
  - Instances and Knowledge Bases
  - Reasoning with Knowledge Bases
- Building Knowledge Bases
  - Understanding Knowledge Bases
  - Using Knowledge Bases
  - Ontology Engineering
- Description Logics and Logics
  - Modal Logics
  - Temporal Logics
  - FOL Fragments
- Description Logics and Databases
  - Conceptual Data Models
  - Query Management
  - Information Integration

## **Conclusions**

#### • A warning

• Rigorous and formal course

# **Conclusions**

- A warning
  - Rigorous and formal course
- Two promises
  - Many examples
  - Only few main important topics