5. Reasoning in Description Logics

Exercise 5.1 Let \mathcal{T} be a TBox consisting of concept inclusions of the form $A_1 \sqsubseteq A_2$ and concept disjointness assertion of the form $A_1 \sqsubseteq \neg A_2$, for atomic concepts A_1 and A_2.

Describe an algorithm for checking concept satisfiability with respect to \mathcal{T}, i.e., whether for some concept A it holds that A is satisfiable with respect to \mathcal{T}.

Exercise 5.2 Consider TBoxes \mathcal{T} consisting of axioms of the form $B_1 \sqsubseteq B_2$, where

\[B_1, B_2 ::= A \mid \exists R \mid \exists R^-, \]

A denotes an atomic concept, and R an atomic role.

1. Describe an algorithm for checking subsumption with respect to a given \mathcal{T}, i.e., whether for two concepts B_1 and B_2 it holds that $\mathcal{T} \models B_1 \sqsubseteq B_2$.

2. Let $\mathcal{A} = \{ A_0(a) \}$ and \mathcal{T} a (n arbitrary) TBox of the above form. Can we determine whether $(\mathcal{T}, \mathcal{A})$ is satisfiable?

Exercise 5.3 Show that concept satisfiability in \mathcal{ALC} is NP-hard.

Hint: show the claim by reduction from SAT.

Exercise 5.4 Let q_n, for $n \geq 2$, be a Boolean conjunctive query with n existential variables of the form $\exists x_1, \ldots, x_n. P(x_1, x_2) \land \cdots \land P(x_{n-1}, x_n)$. Given $n \geq 2$:

1. construct an \mathcal{ALC} KB \mathcal{K}_n such that $\mathcal{K}_n \models q_n$.

2. construct an \mathcal{ALC} KB \mathcal{K}'_{2n} of size polynomial in n such that $\mathcal{K}'_{2n} \models q_{2n}$ and $\mathcal{K}'_{2n} \not\models q_{2n+1}$.

Hint: \mathcal{K}'_{2n} “implements” a binary counter by means of n atomic concepts representing the bits of the counter, and such that the models of \mathcal{K}'_{2n} contain a P-chain of objects of length 2^n.