Query-Based Entailment and Inseparability for \mathcal{ALC} Ontologies

Elena Botoeva

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

joint work with Carsten Lutz, Vladislav Ryzhikov, Frank Wolter and Michael Zakharyaschev
Query Inseparability for Ontologies

By an ontology \mathcal{O} we mean

- a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, or
- a TBox \mathcal{T}.

Query answering over ontologies is an important reasoning task.
Query Inseparability for Ontologies

By an **ontology** \(\mathcal{O} \) we mean

- a **knowledge base** \(\mathcal{K} = (\mathcal{T}, \mathcal{A}) \), or
- a **TBox** \(\mathcal{T} \).

Query answering over ontologies is an important reasoning task.

Ontologies \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) are **query-inseparable** when we **cannot distinguish** between them by means of queries.
Query Inseparability for Ontologies

By an **ontology** \mathcal{O} we mean

- a **knowledge base** $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, or
- a **TBox** \mathcal{T}.

Query answering over ontologies is an important reasoning task.

Ontologies \mathcal{O}_1 and \mathcal{O}_2 are **query-inseparable** when we cannot distinguish between them by means of queries.

Applications

- extracting **modules**
- comparing **versions** of an ontology
- forgetting some symbols from an ontology
- exchanging **knowledge**
Query Inseparability for Knowledge Bases

Consider a class of queries $Q \in \{\text{CQ, UCQ}\}$, and a signature Σ of concept and role names.

KBs $\mathcal{K}_1 = (\mathcal{T}_1, \mathcal{A}_1)$ and $\mathcal{K}_2 = (\mathcal{T}_2, \mathcal{A}_2)$ are Σ-inseparable, $\mathcal{K}_1 \equiv_{\Sigma}^Q \mathcal{K}_2$, if

\[
\mathcal{K}_1 \models q(a) \iff \mathcal{K}_2 \models q(a)
\]

for all Σ-queries $q \in Q$ and all individuals a in \mathcal{K}_1 and \mathcal{K}_2.
Query Inseparability for Knowledge Bases

Consider a class of queries \(Q \in \{ \text{CQ, UCQ} \} \), and a signature \(\Sigma \) of concept and role names.

KBs \(\mathcal{K}_1 = (T_1, A_1) \) and \(\mathcal{K}_2 = (T_2, A_2) \) are \(\Sigma - Q \) inseparable, \(\mathcal{K}_1 \equiv^Q_\Sigma \mathcal{K}_2 \), if

\[\mathcal{K}_1 \models q(a) \iff \mathcal{K}_2 \models q(a) \]

for all \(\Sigma \)-queries \(q \in Q \) and all individuals \(a \) in \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \).

\[\Sigma = \{ \text{spots} \} \]
Examples

Query inseparability is different from logical equivalence:

\[K_1 = (\{ A \sqsubseteq B \}, \{ A(a) \}) \quad \text{and} \quad K_2 = (\emptyset, \{ A(a), B(a) \}) \]

\[K_1 \nleq K_2 \quad \text{but} \quad K_1 \equiv^{(U)CQ} \ K_2 \]
Examples

Query inseparability is different from logical equivalence:

\[\mathcal{K}_1 = (\{ A \sqsubseteq B \}, \{ A(a) \}) \quad \text{and} \quad \mathcal{K}_2 = (\emptyset, \{ A(a), B(a) \}) \]

\[\mathcal{K}_1 \not\equiv \mathcal{K}_2 \quad \text{but} \quad \mathcal{K}_1 \equiv \{\mathcal{U}\}^\text{CQ} \mathcal{K}_2 \]
Examples

Query inseparability is different from logical equivalence:

\[\mathcal{K}_1 = (\{ A \sqsubseteq B \}, \{ A(a) \}) \quad \text{and} \quad \mathcal{K}_2 = (\emptyset, \{ A(a), B(a) \}) \]

\[\mathcal{K}_1 \nleq \mathcal{K}_2 \quad \text{but} \quad \mathcal{K}_1 \equiv_{\{A,B\}} \mathcal{K}_2 \]

UCQ-inseparability and CQ-inseparability are distinct:

\[\mathcal{K}_1 = (\{ A \sqsubseteq B \sqcup C \}, \{ A(a) \}) \quad \text{and} \quad \mathcal{K}_2 = (\emptyset, \{ A(a) \}) \]
Examples

Query inseparability is different from logical equivalence:

\[\mathcal{K}_1 = (\{ A \sqsubseteq B \}, \{ A(a) \}) \quad \text{and} \quad \mathcal{K}_2 = (\emptyset, \{ A(a), B(a) \}) \]

\[\mathcal{K}_1 \not\equiv \mathcal{K}_2 \quad \text{but} \quad \mathcal{K}_1 \equiv^{(U)\text{CQ}}_{\{A,B\}} \mathcal{K}_2 \]

UCQ-inseparability and CQ-inseparability are distinct:

\[\mathcal{K}_1 = (\{ A \sqsubseteq B \sqcup C \}, \{ A(a) \}) \quad \text{and} \quad \mathcal{K}_2 = (\emptyset, \{ A(a) \}) \]

\[\mathcal{K}_1 \not\equiv^{\text{UCQ}}_{\{A,B,C\}} \mathcal{K}_2 \quad \text{but} \quad \mathcal{K}_1 \equiv^{\text{CQ}}_{\{A,B,C\}} \mathcal{K}_2 \]
Examples

Query inseparability is different from logical equivalence:

\[\mathcal{K}_1 = (\{ A \sqsubseteq B \}, \{ A(a) \}) \quad \text{and} \quad \mathcal{K}_2 = (\emptyset, \{ A(a), B(a) \}) \]

\[\mathcal{K}_1 \not\equiv \mathcal{K}_2 \quad \text{but} \quad \mathcal{K}_1 \equiv^{(U)CQ}_{\{A,B\}} \mathcal{K}_2 \]

UCQ-inseparability and CQ-inseparability are distinct:

\[\mathcal{K}_1 = (\{ A \sqsubseteq B \sqcup C \}, \{ A(a) \}) \quad \text{and} \quad \mathcal{K}_2 = (\emptyset, \{ A(a) \}) \]

\[\mathcal{K}_1 \not\equiv^{UCQ}_{\{A,B,C\}} \mathcal{K}_2 \quad \text{but} \quad \mathcal{K}_1 \equiv^{CQ}_{\{A,B,C\}} \mathcal{K}_2 \]

Signature makes a difference:

\[\mathcal{K}_1 \equiv^{UCQ}_{\{A\}} \mathcal{K}_2 \]
Consider signatures: Σ_1 for ABoxes and Σ_2 for queries.

TBoxes \mathcal{T}_1 and \mathcal{T}_2 are (Σ_1, Σ_2)-(U)CQ inseparable, $\mathcal{T}_1 \equiv^{(U)\text{CQ}}_{(\Sigma_1, \Sigma_2)} \mathcal{T}_2$, if

$$(\mathcal{T}_1, \mathcal{A}) \equiv^{(U)\text{CQ}}_{\Sigma_2} (\mathcal{T}_2, \mathcal{A})$$

for all Σ_1-ABoxes \mathcal{A}.
Main Results

KBs:
- (rooted) CQ-inseparability **undecidable** for \mathcal{ALC}.
- (rooted) UCQ-inseparability **2ExpTime-complete**.

TBoxes:
- (rooted) CQ-inseparability **undecidable** for \mathcal{ALC}.
- CQ/UCQ-inseparability **2ExpTime-complete** for $\mathcal{Horn-ALC}$.
- rooted CQ/UCQ-inseparability **ExpTime-complete** for $\mathcal{Horn-ALC}$.
See you at the poster!