The Knowledge Base Exchange Framework

We study the knowledge base (KB) exchange problem for OWL-QL KBs.

Let \(M = (\Sigma_1, T_1, A_1) \) and \(M' = (\Sigma_2, T_2, A_2) \) be two KBs. A tuple \((T_1, A_1) \) is a desired solution for \(K_1 = (T_1, A_1) \) under \(M = (\Sigma_1, T_1, A_1) \).

We consider computational problems along three dimensions:

1. Non-emptyness
2. Membership
3. Universal solution

Universal solution: preserves all models.

\(T_1 \) is a universal solution. For every \(A_1 \) and \(\text{UCQ} g \) over \(L(T_1 \cup T_2, A_1) \) and \(T_1, T_2, A_1 \) give the same answers to \(g \).

It is easy to check the homomorphism from \(U_1 \) to \(U_2 \). For the opposite direction, we employ the technique of reachability games on graphs known to be PTime-complete.

\(T_1 = (R \subseteq \mathcal{R}, A_1 \subseteq \mathcal{A}), A_1 = (\{\text{AuthorOf}, \text{WrittenBy}\}) \).

There exists a homomorphism from \(U(T_1, A_1) \) to \(U_2 \). If \(\text{Duplicator}\) has a strategy in \(G \) from \(U(T_1, A_1) \), then \(\text{Spiller}\) has a strategy against \(\text{Duplicator}\) to avoid \(F \).

The upper bound is obtained by using two-way alternating tree automata (2ATA).

- 2ATA \(\Delta^{\mathcal{L}} \) accepts \(U_2 \), arbitrarily labeled with a reserved symbol \(G \).

There exists a universal solution for \(K_2 = (T_2, A_2) \) under \(M = (\Sigma_1, T_1, A_1) \).

Consider \(T_1 = \{A \subseteq \mathcal{R}, \Sigma_1 \subseteq \mathcal{A}\} \), \(T_1 = \{A \subseteq \mathcal{R}, \Sigma_1 \subseteq \mathcal{A}\} \), \(T_2 = \{A \subseteq \mathcal{R}, \Sigma_2 \subseteq \mathcal{A}\} \). In particular, these conditions are satisfied:

- \(T_1 \cup T_2 \models A \subseteq \mathcal{R} \)
- \(T_1 \cup T_2 \models \Sigma_1 \subseteq \mathcal{A} \)
- \(T_1 \cup T_2 \models \Sigma_2 \subseteq \mathcal{A} \)

The membership problem for universal UCO-solutions with simple \(\text{Albox} \) is PSpace-hard.

\(T_1 \) is a UCO-representation of \(T_2 \).

\(T_1 \) is a UCO-representation of \(T_2 \).

The upper bound is obtained by using two-way alternating tree automata (2ATA).

- 2ATA \(\Delta^{\mathcal{L}} \) accepts \(U_2 \), arbitrarily labeled with a reserved symbol \(G \).

There exists a universal solution for \(K_2 = (T_2, A_2) \) under \(M = (\Sigma_1, T_1, A_1) \).