VISOR: Visualizing Summaries of Ordered Data

Giovanni Mahlknecht, Michael Böhlen, Anton Dignös, Johann Gamper

Problem Description

- Given an **Ordered Dataset**, approximate the dataset by \(k \) segments
- Each segment is assigned a **constant value**, derived from merging multiple consecutive input tuples
- Summarization depends on multiple parameters
 - reduction size \(k \)
 - summarization technique
 - error measure
- Contribution
 - Tool to visualize different summarization techniques
 - Visualization of induced error in function of summary size \(k \)
 - Comparison of summarization methods: VOPT, XOPT, PAA

Scenario: Comparing Summaries

- **Dataset**
 - View
 - Data and Summary FLIGHTS
 - Use of VISOR
 - Statistics
 - \(k=17 \): VOPT: RMSE 59.4 (23.71% of max) XERR 250.13 (66.85% of max)
 - PAA-AVG: RMSE 204.0 (81.43% of max) XERR 463.65 (123.92% of max)

\(\epsilon \)-Graph and \(\Delta \)-Graph

- Each graph shows two error measures: RMSE and XERR
- **\(\epsilon \)-Graph**
 - Shows the error in function of \(k \): \(\epsilon(k) = m_e(D,k) \)
 - Useful to find appropriate \(k \)
 - Useful to compare error behavior of two summarization methods.
- **\(\Delta \)-Graph**
 - Shows the change of the error \(\Delta(k) = m_e(D,k) - m_e(D,k+1) \)
 - Useful to find points where the an in crease of \(k \)does not give much improvements

Scenario: Exploration of Extremes

- **Dataset**
 - View
 - Data and Summary WEKIT
 - Use of VISOR
 - Statistics
 - \(k=11 \): VOPT: RMSE 10.7 (15.88% of max) XERR 131.51 (63.02% of max)
 - XOPT-CENTER: RMSE 20.6 (27.26% of max) XERR 36.97 (21.33% of max)

Summarization Methods

- **OKS-Framework**
 - Covers a variety of data summary structures
 - Minimization Problem: approximate an ordered dataset by \(k \)segments s.t. each segment summarizes a set of contiguous data points and induced error is minimized
 - Error function \(m_e(D) \), Merge function \(\oplus \)
 - \(\text{name} \)
 - \(\epsilon \)
 - \(\oplus \)
 - \(\text{VOPT} \) variance avg
 - \(\text{XOPT-CENTER} \) |max – min| |min+(max–min)|/2
 - \(\text{XOPT-MAX} \) |max – min|
 - \(\text{XOPT-MIN} \) |min|
- **Piecewise Aggregate Approximation (PAA): Segments of equal length**

Internals

- Computation of OKS-summaries
 - Incremental computation
 - Dynamic Programming
 - Graph representation instead of matrix to keep small memory footprint