GOAL AND APPROACH

Goal: Reduction of temporal operators to nontemporal operators using adjustment of timestamps.

Problem Definition: Given a temporal operator \(\psi^T \), and input relations \(r_1, \ldots, r_n \), our goal is to express \(\psi^T(r_1, \ldots, r_n) \) as follows:

\[
\psi^T(r_1, \ldots, r_n) = \phi^T(\psi^T(r_1, \ldots, r_n)) \quad (\text{reduction})
\]

where \(\psi \) is the nontemporal operator corresponding to \(\psi^T \), and \(\phi^T \) is a temporal primitive.

Solution:
- Two new algebra operators (primitives) for the adjustment of timestamps:
 - Temporal Splitter \(\mathcal{N} \)
 - Temporal Aligner \(\phi^T \)
- Reduction rules for usage within nontemporal RA.
- Timestamp propagation for accessing original timestamps.

EXAMPLE

Input: Manager \(M \) manages, employee \(N \) employed at department \(D \) during time \(T \).

Query: Which employees has a manager been managing who have a shorter contract period than the manager?

Result: Temporal Left Outer Join

IMPLEMENTATION

<table>
<thead>
<tr>
<th>Operator</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{(r)})</td>
<td>(\sigma_{(r)})</td>
</tr>
<tr>
<td>(\pi_{B}(r))</td>
<td>(\pi_{B}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{\geq}(r))</td>
<td>(\rho_{T}^{\geq}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{<}(r))</td>
<td>(\rho_{T}^{<}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{\leq}(r))</td>
<td>(\rho_{T}^{\leq}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{=}(r))</td>
<td>(\rho_{T}^{=}(r))</td>
</tr>
<tr>
<td>(\pi_{T}(r))</td>
<td>(\pi_{T}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{>}(r))</td>
<td>(\rho_{T}^{>}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{\neq}(r))</td>
<td>(\rho_{T}^{\neq}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{<}(r))</td>
<td>(\rho_{T}^{<}(r))</td>
</tr>
<tr>
<td>(\rho_{T}^{\geq}(r))</td>
<td>(\rho_{T}^{\geq}(r))</td>
</tr>
</tbody>
</table>

SUMMARY

- Algebraic basis for temporal operators.
- Reduction of temporal operators to nontemporal operators.
- Deep integration into PostgreSQL kernel.

Future Work

- Optimization/equivalence rules for temporal primitives.
- Extensions towards time depended (malleable) quantities.
- Extension to bag algebra.
