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Monitoring Application
I BAFU1 use sensors to monitor the water quality in Swiss rivers.

I The collected time series are multivariate with di↵erent features.

1
Federal O�ce for the Environment in Switzerland
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Monitoring Requirements

I Monitoring hydrometric time series involves various analytical tasks: data
exploration, anomaly detection, forecasting, trend analysis, recovery of missing
values, and similarity search.

I Traditional RDBMs are ill-equipped to handle analytical tasks.

I Time Series Database Systems (TSDBs) are specialized systems that store,
manage, and query large time-series data.

I Picking the best TSDB remains a challenge.
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SOTA & Contributions

I Existing TSDB benchmarks implement:
I Static queries on a subset of relevant systems.

I Ingestion and querying in isolation.

I Simplistic data generation, if any.

I TSM-Bench benchmarks seven popular time series systems by providing:
I Dynamic query evaluation using o✏ine and online workloads.

I Realistic time series generation technique.

I Recommendations for understanding and navigating the architecture of systems.
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Architecture
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I TS-LSH uses sample data to generate large realistic data streams.

I The executor launches configurable workload tiers.

I The statistics collection module records the performance of the TSDB.
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TS-LSH: Time Series Generation/1
Generative Adversarial Network (GAN)
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I GAN takes an input time series partitioned into segments.

I Concatenating segments using GAN is exponential.

vldb’23@Vancouver 7 / 19



TS-LSH: Time Series Generation/2
Locality-Sensitive Hashing (LSH)
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I TS-LSH augments both the length and the number of time series.

I TS-LSH is sub-linear with the input and linear with the output.
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Workloads Design

We designed the workloads around three performance dimensions:

I Size of input/output data, data access, and the number of operations.

I Interplay between querying and ingestion.

I Impact of time series features on compression performance (data encoding).
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Experimental Setup

I Systems: ClickHouse, Druid, eXtremeDB, InfluxDB, MonetDB, QuestDB, and
TimescaleDB.

I Datasets: Two datasets (#sensors, #stations, range)
I D-LONG: 10⇥ 100⇥ 60 (518M datpoints)
I D-MULTI: 2k ⇥ 100⇥ 10 (17.2B datapoints)

I O✏ine workload: 7 queries (Fetching, Fetching with Filter, Aggregation,
Downsampling, Upsampling, Cross-sensor Average, and Correlation).

I Online workload: Queries execution under concurrent ingestion.

I Compression workload: Storage size under various time series features.

vldb’23@Vancouver 11 / 19



O✏ine Workload
Aggregation & Downsampling

SELECT st_id, AVG(s_i)...AVG(s_j) Agg

FROM ts_table
WHERE st_id in <st_list>
AND time < ?timestamp
AND time >= ?timestamp - ?range
GROUP BY st_id;
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(b) Downsampling

I eXtremeDB and TimescaleDB are the fastest in case of simple aggregation.
I eXtremeDB and ClickHouse are well-suited to downsample data.
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Online Workload
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(b) Data Aggregation

I Queries do not block writes for all systems.

I QuestDB and ClickHouse are the best for low insertion rates.

I InfluxDB and MonetDB provide the best runtimes for very high insertion rates.
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Compression Workload
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(b) Data Sparsity

I All systems benefit from the existence of repeats.

I Only ClickHouse and Druid can take advantage of the existence of missing values.
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Performance Summary
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I Seven discriminative dimensions for comparing the performance of TSDB.
I The performance of each system for di↵erent query types is ranked on a 0-5 scale.
I No silver bullet system.
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Architecture Impact

Sequences

Sparse IndexingPartitioning

Upsampling

Sparse 
Indexing

Array-
based

Aggregation
Moving Average

SIMD

QUERY SELECTIVITY

D
AT

AS
ET

 S
IZ

E

SIMD

(a) O✏ine Workloads

IN
SE

RT
IO

N
 R

AT
E

B-Tree

Sparse IndexingPartitioning

Data Fetching
Upsampling

Sparse 
Indexing

Column 
storage

Filtering
Aggregation

QUERY SELECTIVITY

Log-Structured Merge Tree

(b) Online Workloads

I No single architecture dominates all the workload tiers
I Design factors:

I O✏ine workloads: query selectivity and the size of the data
I Online workloads: Insertion rate and the query selectivity
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Conclusion

I TSM-Bench is a comprehensive benchmark for TSDBs.

I We provide a fine/coarse-grained recommendation for decision-makers at di↵erent
levels.

I The code is open-source.

I Future work includes mixed-queries workloads and multitenancy scenarios.
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Thank you!

abdel@exascale.info

Questions?
https://github.com/eXascaleInfolab/TSM-Bench


	Introduction
	TSM-Bench
	Evaluation
	Recommendation

