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Monitoring Application

» BAFU! use sensors to monitor the water quality in Swiss rivers.

» The collected time series are multivariate with different features.
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Monitoring Requirements

» Monitoring hydrometric time series involves various analytical tasks: data
exploration, anomaly detection, forecasting, trend analysis, recovery of missing
values, and similarity search.

» Traditional RDBMs are ill-equipped to handle analytical tasks.

» Time Series Database Systems (TSDBs) are specialized systems that store,
manage, and query large time-series data.

» Picking the best TSDB remains a challenge.
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SOTA & Contributions

» Existing TSDB benchmarks implement:
» Static queries on a subset of relevant systems.

» Ingestion and querying in isolation.
» Simplistic data generation, if any.
» TSM-Bench benchmarks seven popular time series systems by providing:
» Dynamic query evaluation using offline and online workloads.
P Realistic time series generation technique.

» Recommendations for understanding and navigating the architecture of systems.
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Architecture
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» TS-LSH uses sample data to generate large realistic data streams.

» The executor launches configurable workload tiers.

» The statistics collection module records the performance of the TSDB.
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TS-LSH: Time Series Generation/1

Generative Adversarial Network (GAN)

Original Data (seed time series)
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> GAN takes an input time series partitioned into segments.

» Concatenating segments using GAN is exponential.
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TS-LSH: Time Series Generation/2

Locality-Sensitive Hashing (LSH)

Original Data (seed time series)
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Synthetic Data (multiple and/or longer time series)

» TS-LSH augments both the length and the number of time series.

» TS-LSH is sub-linear with the input and linear with the output.
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Workloads Design

We designed the workloads around three performance dimensions:
» Size of input/output data, data access, and the number of operations.

P Interplay between querying and ingestion.

» Impact of time series features on compression performance (data encoding).
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Experimental Setup

» Systems: ClickHouse, Druid, eXtremeDB, InfluxDB, MonetDB, QuestDB, and
TimescaleDB.

> Datasets: Two datasets (#sensors, #stations, range)

»> D-LONG: 10 x 100 x 60 (518M datpoints)
»> D-MULTI: 2k x 100 x 10 (17.2B datapoints)

» Offline workload: 7 queries (Fetching, Fetching with Filter, Aggregation,
Downsampling, Upsampling, Cross-sensor Average, and Correlation).

» Online workload: Queries execution under concurrent ingestion.

» Compression workload: Storage size under various time series features.
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Offline Workload

Aggregation & Downsampling

SELECT st_id, AVG(s_i)...AVG(s_j)
FROM ts_table

WHERE st_id in <st_list>

AND time < 7timestamp

Agg

AND time >= 7timestamp - 7range
GROUP BY st_id;
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(a) Aggregation (b) Downsampling

> eXtremeDB and TimescaleDB are the fastest in case of simple aggregation.
» eXtremeDB and ClickHouse are well-suited to downsample data.
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Online Workload
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» Queries do not block writes for all systems.
» QuestDB and ClickHouse are the best for low insertion rates.

» InfluxDB and MonetDB provide the best runtimes for very high insertion rates.
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Compression Workload

[ ClickHouse Druid + InfluxDB & TimescaleDB|
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> All systems benefit from the existence of repeats.

» Only ClickHouse and Druid can take advantage of the existence of missing values.
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Performance Summary
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» Seven discriminative dimensions for comparing the performance of TSDB.
» The performance of each system for different query types is ranked on a 0-5 scale.
» No silver bullet system.
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Architecture Impact
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(a) Offline Workloads (b) Online Workloads

» No single architecture dominates all the workload tiers

» Design factors:
» Offline workloads: query selectivity and the size of the data
» Online workloads: Insertion rate and the query selectivity
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Conclusion

» TSM-Bench is a comprehensive benchmark for TSDBs.

» We provide a fine/coarse-grained recommendation for decision-makers at different
levels.

» The code is open-source.

P Future work includes mixed-queries workloads and multitenancy scenarios.
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