

Blending Contextual Data with Heterogeneous Time Dimensions for Improved Time Series Analysis

Saifullah Burero Jerry W. Sangma Anton Dignös Johann Gamper Free University of Bozen-Bolzano

- Processes in industrial domains heavily rely on sensor data
 - ▶ Movement angles, speed, pressure, temperature, etc.
- ► Data is stored in database(s) for analytics
 - Monitoring, forecasting, predictive maintenance, etc.

Common data (warehouse) in an industrial setting

Component(s) to monitor and sensor data

- Sensor data rarely comes alone context data
- ► Images, static data, KPIs, process data, error history, events

Problem Setting

- ► **Application:** Monitor a Component
- ► Task: Forecast a measurement (time series)
- ► Input: Historical measurements and context

$$m_{t+x} = f(\ldots m_t, \ldots c_{j,f(t)})$$

► **Challenge:** How to include context?

Related Work – Part I

- Many works show benefit of incorporating contextual data
 - ▶ Impact of weather conditions on electricity consumption¹,²
 - ► Weather data for water demand forcasting³
 - Air temperature for electricity load forecasting⁴
 - ...
- More precise, more robust, better explainability
- Approaches typically use other time series as context

¹Akshaya Prabakar et al. "Applying machine learning to study the relationship between electricity consumption and weather variables using open data". In: IEEE ISGT-Europe. 2018.

²Ghassen Ben Brahim. "Weather Conditions Impact on Electricity Consumption in Smart Homes: Machine Learning Based Prediction Model". In: *IEEE ICEEE*. 2021.

³Ariele Zanfei et al. "A short-term water demand forecasting model using multivariate long short-term memory with meteorological data". In: *Journal of Hydroinformatics* (2022).

⁴Niaz Bashiri Behmiri, Carlo Fezzi, and Francesco Ravazzolo. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks". In: Energy (2023).

Related Work - Part II

- ► Data Fusion in time series⁵
- ► Fusion of data with different modalities
 - ► Time series
 - Text
 - Images
 - Audio
 - Videos
- Approaches typically assume perfect alignment with time series

⁵Manuel Mondal et al. "A survey of multimodal event detection based on data fusion". In: VLDB J. (2025).

► Time series are measurements over regular time steps⁶

$$X = \langle (x_1, 1), (x_2, 2), (x_3, 3), \dots, (x_n, n) \rangle$$
, where $x_i \in \mathbb{R}$

- Some contextual data is heterogeneous in time dimension
 - Firror events are sparse/dense over time $E = \langle (ERR, 1), (ERR, 7) \rangle$
 - Processes/tasks last over some time span $P = \langle (HEAT, 1-4), (MOVE, 2-7) \rangle$
 - Environment data is less/more frequently sampled $T = \langle (35^{\circ}C, 1), (38^{\circ}C, 3), (39^{\circ}C, 5) \rangle$
 - Static properties have no time references $S = \{(sensor_1, \pm 2^{\circ}C), (sensor_2, \pm 1^{\circ}C), (sensor_1, BZ)\}$
- ► We focus on **heterogeneity in time dimension**

⁶Or at least they are assumed to be.

- Primary time series is the signal to monitor
- Four types of heterogeneity in time dimensions⁷

Secondary time series

Signals with different sampling rates

Static data

Data without time reference

Event data

Data that occurs very irregularly

Interval data

Data that occurs over some period of time

⁷Saifullah Burero. "Integrating Heterogeneous Contextual Data for Enhanced Time Series Analysis". In: EDBT 2025 PhD Workshop. 2025.

- Simplified use case: electrical power consumption⁸
- ▶ Primary time series: total energy consumption

⁸Smart meter in London dataset https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london and https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households

Primary time series
 Electrical power consumption

Secondary time series
 Weather data (temperature, humidity)

Static data (Location data, household information)

Event data
Bank holidays

► Interval data

School vacations

Datamodel

▶ Impact of context (e.g., temperature)

▶ People use electricity for heating (inverse relationship)

Problem: Context has heterogeneous time dimensions

Solution: Create time series from context

Approach: Given granularity w

- 1. Align using aggregation/imputation
- 2. Compute lag information based on time dimension
- 3. Apply any (multivariate) time series analytics algorithm

- 1. Align using aggregation/imputation
 - ► AVG/MAX/MIN for secondary time series
 - Count events
 - Count starting/ending periods
 - etc.
- 2. Compute lag information based on time dimension
 - Number of events in the past
 - Duration since last event
 - Period duration so far
 - etc.
- 3. Apply any time series analytics algorithm
 - ▶ Plethora of algorithms available

► Intuition

- For events occurrence rather than value is important
- For intervals occurrence/duration is important

► Industrial setting

- Current error (machine stop) indicates temperature reduction
- Number of errors in the past indicate degradation
- Number of current tasks (intervals) affect consumption
- Duration of previous tasks (intervals) affect aging

▶ Water demand

- Pipe maintenance implies unusual water flow
- Current tourism season indicates high consumption
- Duration of drought affects water demand

CPU monitoring

- Number of tasks (intervals) affects temperature
- Number of interrupts affects delay
- Many CPU fan error messages affect temperature

Small Evaluation – Setup

- Dataset: Electrical power consumption
- ▶ Very simple task/model: Random Forest regression
 - Next value (30min ahead)
 - ▶ 24^t h value (12h ahead)
 - ► 48^t h value (24h ahead)
- Setting: without and more or less context data

Е	electrical power consumption only	time series	
ES	E + consumers per group	time series	
EW	$E + weather \; data$	time series	
EE	E + bank holidays	event	
EH	E + school vacations	interval	
	some more combinations	multiple	
All	E + all contexts	multiple	

Metric: Improvement in MAE and MSE as compared to E

Small Evaluation – Results

Features	Improvement in %					
	Next Value		24th Value		48th Value	
	MSE	MAE	MSE	MAE	MSE	MAE
E	_	_	-	_	_	-
ES	20.59	12.04	31.85	16.68	20.63	10.58
EW	12.68	7.20	28.13	16.81	12.91	7.56
EWS	26.46	15.45	43.87	26.92	26.87	15.01
EE	0.17	0.05	0.04	0.02	0.06	0.01
EEWS	26.38	15.46	43.90	26.91	26.70	14.84
EH	17.19	9.76	20.62	11.96	17.43	9.53
ALL	28.00	16.14	44.92	27.83	27.20	15.59

Summary – Part I

- Transform heterogeneous time dimensions into uniform time series
- ► Integrates context for traditional time series algorithms
- Can be done semi-automatically (exploiting DB/DW)
- Context may be known in future future-known covariates
- Challenges
 - ► Feature extraction (data management)
 - Feature selection (machine learning)
- ► Is a "feature engineering" approach

Related Work – Part III

- ► Temporal Fusion Transformers (TFT)⁹
 - ► Transformer-based approach
 - Multi-horizon time series forecasting
 - Dynamically selects important variables (gating mechanisms)
 - Captures temporal relationships (attention mechanisms)
 - Leverages historical patterns and future-known covariates
 - Handles mixed-data types (static + time series)
- ► Focus only on **static data** with time series

⁹Bryan Lim et al. "Temporal fusion transformers for interpretable multi-horizon time series forecasting". In: International Journal of Forecasting (2021).

Small Evaluation - Part II

- ▶ TFT with consumer groups as static context
- Multi-horizon electrical power consumption forecasting
- ► Future covariates: weekdays, hours, weekends, months
- Evaluation with vs. without additional context

Group	Improvement in %			
	MASE	RMSE		
ACORN-	85.32	84.30		
ACORN-U	9.75	5.81		
Urban Adversity	52.02	47.83		
AVG – 7 groups	48.40	44.97		

Conclusion

- Context is important for time series analysis
- ► Some context is **heterogeneous in the time dimension**
- ► Techniques for appropriate integration are required
 - ► Transformation-based (alignment + appropriate lag)
 - Transformer-based (alignment + appropriate treatment)

Future Work

▶ Data management aspects

Efficient integration of different time dimensions
 Interval relationship joins¹⁰, range containment joins¹¹, etc.

► Machine learning aspects

► Effective exploitation of different time dimensions Extension of TFT¹² architecture

¹⁰Danila Piatov et al. "Cache-efficient sweeping-based interval joins for extended Allen relation predicates". In: VLDB J. (2021).

¹¹Anton Dignös et al. "Leveraging range joins for the computation of overlap joins". In: VLDB J. (2022).

¹²Bryan Lim et al. "Temporal fusion transformers for interpretable multi-horizon time series forecasting". In: International Journal of Forecasting (2021).

Thank you!

Please get in touch if you are interested!

