

Pre-Proceedings of the ESOCC 2018

Workshops

Joint CloudWays and OptiMoCS Workshop

 Vasilios Andrikopoulos, Nane Kratzke, Zoltán Ádám Mann, Claus Pahl
(Editors)

14th International Workshop on Engineering Service-
Oriented Applications and Cloud Services

Luciano Baresi, Willem-Jan van den Heuvel, Andreas S. Andreou, Guadalupe
Ortiz, Christian Zirpins, George Feuerlicht, Winfried Lamersdorf (Editors)

Abstract

This volume contains the papers presented at the WESOACS and Joint CloudWays and
OptiMoCS workshops associated with the 7th European Conference on Service-Oriented
and Cloud Computing, ESOCC 2018. The workshops were held in Como, Italy, on 12th
September 2018. The workshops covered specific topics in service-oriented and cloud
computing-related domains:

- 4th International Workshop on Cloud Migration and Architecture (CloudWays 2018)

- 1st International Workshop on Optimization in Modern Computing Systems (OptiMoCS
2018)

- 14th International Workshop on Engineering Service-Oriented Applications and Cloud
Services (WESOACS 2018)

All papers presented at the workshops were selected through a rigorous review process, in
which each submission was reviewed by at least three members of the workshops’ program
committees.

We as the workshop chairs would like to thank all authors for their submissions, and the
reviewers for their work.

Table of Contents

CLOUDWAYS AND OPTIMOCS

Performance Engineering for Kubernetes-style Cloud Cluster Architectures using
Model-Driven Simulation
[CloudWays track]

4

Federico Ghirardini, Areeg Samir, Claus Pahl and Ilenia Fronza

On enhancing the orchestration of multi-container Docker applications
[CloudWays track]

16

Antonio Brogi, Claus Pahl and Jacopo Soldani

Transactional Migration of Inhomogeneous Composite Cloud Applications
[CloudWays track]

28

Josef Spillner and Manuel Ramírez López

Secure apps in the Fog: Anything to declare?
[OptiMoCS track]

40

Antonio Brogi, Gian-Luigi Ferrari, Stefano Forti

WESOACS

Towards a Generalizable Comparison of the Maintainability of Object-Oriented
and Service-Oriented Applications

Justus Bogner, Bhupendra Choudhary, Stefan Wagner and Alfred Zimmermann

Implementation of a Cloud Services Management Framework

George Feuerlicht and Thai Hong Tran

Decentralized Billing and Subcontracting of Application Services for Cloud
Environment Providers

Wolf Posdorfer, Julian Kalinowski, Heiko Bornholdt and Winfried Lamersdorf

May Contain Nuts: The Case for API Labels

Cesare Pautasso and Erik Wilde

On Limitations of Abstraction-Based Deadlock-Analysis of Service-Oriented
Systems

Mandy Weissbach and Wolf Zimmermann

55

67

79

90

102

Performance Engineering for Kubernetes-style
Cloud Cluster Architectures using Model-Driven

Simulation

Federico Ghirardini, Areeg Samir, Ilenia Fronza, and Claus Pahl

Free University of Bozen-Bolzano, Bolzano, Italy
firstname.surname@unibz.it

Abstract. We propose a performance engineering technique for self-
adaptive container cluster management, often used in cloud environments
now. We focus here on an abstract model that can be used by simula-
tion tools to identify an optimal configuration for such a system, capable
of providing reliable performance to service consumers. The aim of the
model-based tool is to identify and analyse a set of rules capable of bal-
ancing resource demands for this platform. We present an executable
model for a simulation environment that allows container cluster archi-
tectures to be studied. We have selected the Kubernetes cluster manage-
ment platform as the target. Our models reflect the current Kubernetes
platform, but we also introduce an advanced controller model going be-
yond current Kubernetes capabilities. We use the Palladio Eclipse plugin
as the simulation environment. The outcome is a working simulator, that
applied to a concrete container-based cluster architecture could be used
by developers to understand and configure self-adaptive system behavior.

Keywords: Container · Cluster · Kubernetes · Performance Engineering
· Simulation

1 Introduction

Container management techniques such as Docker or Kubernetes are becoming
widely used in cloud and other environments. making container-based systems
self-adaptive involves the continuous adjustment of their computing resources
in order to provide a reliable performance under different workloads. To achieve
this, a well-designed autonomous elastic system should be built considering the
following three key aspects: scalability, the ability of the system to sustain work-
load fluctuation, cost efficiency, acquiring only the required resources by releasing
initialized ones, time efficiency, acquiring and releasing resources as soon as a
request is made [5]. Moreover, whenever it is possible the system should also be
fault tolerant, meaning it detects and handles failures effectively.

Therefore, we focus on investigating container cluster architectures for explor-
ing and analyzing different performance and workload patterns, capable of en-
hancing reliability and validity for cluster management in container-based cloud
environments. The main goal of our study is obtaining a reliable tool to be used

4

as a simulation environment for autonomous elastic systems. We aim to help
finding suitable settings for the management of container-based cloud resources.
While various simulation tools such as CloudSim exist, we focus here on an archi-
tecture model driven approach that allows application and platform architecture
settings to be modelled and changed easily.

We use the container cluster management tool Kubernetes here that is now
widely used in cloud environments as our platform facilitating self-adaptive sys-
tems. We use Palladio as the platform for modeling and simulation here.

An adaptive container system architecture can be abstracted and viewed as
the inter-collaboration of three main parts: an application (or service) that is
provided by the system, the container platform, and a monitor for analyzing
resources being used and overall performance. As a consequence, the most suit-
able and logically applicable architectural pattern for such a system has been the
MAPE-K architecture pattern (i.e., using a Monitor, Analyze, Plan, Execute and
Knowledge implementation). We will provide here an abstract, but executable
model for the (i) architectural aspects of platform and application and (ii) the
controller for self-management. The model is essentially the configuration of a
simulation environment. The first set of models (i) reflect the current Kubernetes
platform, which we also use in the experimental evaluation. However, we also
introduce an advanced controller model (ii) aiming to link observable perfor-
mance anomalies to underlying workload problems that is going beyond current
Kubernetes capabilities.

The paper is structured as follows. We start with background technologies
in Section 2, then introduce the backbone of the architecture model in Section
3. We present our experimental findings in Section 4 and discuss related work in
Section 5. As an extension, we look at important aspects of a controller model
in Section 6, before ending with conclusions and future work in Section 7.

2 Self-Adaptive Systems – Background

For our autoscaling investigation , we follow the MAPE-K control loop, i.e.,
monitoring the performance of the application environment used by public users
and tenants (i.e. a group of users who share a common access with specific
privileges to the software instance), analyzing the just planned corrective actions,
using the knowledge part (i.e. the Rule base) containing the autoscaling rules of
the system. Autoscaling an application involves specifying threshold-based rules
to implement elasticity policies for acquiring and releasing resources [?]. To give
an example, a typical autoscaling rule might look as follows: IF the workload
is high (e.g., > 80%) AND the response time is slow (e.g., > 600msec) THEN
add/remove n instances.

2.1 Kubernetes Container Cluster Management

There are two essential Kubernetes concepts: at a macroscopic level, a system
consists of the pod and the service. The management of elastic applications in

5

Kubernetes consists of multiple microservices, which communicate with each
other. Often those microservices are tightly coupled forming a group of contain-
ers that would typically, in a non-containerized setup, run together on one server.
This group, the smallest unit that can be scheduled to be deployed through Ku-
bernetes, is called a pod. These containers are co-located, hence share resources
and are always scheduled together. Pods are not intended to live long. They are
created, destroyed and re-created on demand, based on the state of the server
and the service itself.

Since pods have a short lifetime, there is no guaranteed IP address they
are served at. For that reason, Kubernetes uses the concept of a service: an
abstraction on top of a number of pods, typically requiring to run a proxy for
other services to communicate with it via a virtual IP address. This is used to
configure load balancing for pods and expose them as a service [7].

Kubernetes has been chosen as the container system for our investigation
because of its autoscaling feature. Kubernetes is able to automatically scale up
and down clusters. Once a cluster is running, there is the possibility of creating a
Horizontal Pod Autoscaler (HPA). When defining an HPA there is the possibility
to declare the exact number of pod replicas that the system should maintain (e.g.,
between 1 and 10). So, the autoscaler will increase and decrease the number of
replicas (via deployment) to maintain an average CPU utilization of 50% (default
setting) across all pods [8]. We will create simulator for this.

2.2 Palladio Modelling and Simulation

Fig. 1. Palladio Simulator Environment, from [15].

Palladio has been chosen as
the simulation platform, not
only for its advanced simula-
tion tools, but also for its ar-
chitectural modeling capabili-
ties. With Palladio we can pro-
totype and adjust also the ap-
plication and platform archi-
tecture of a system under in-
vestigation. Palladio provides
several models capable of spec-
ifying the architecture and car-
rying out simulations, see Fig.
1. In Palladio, each model is
built on top of the previous
one. Palladio is Eclipse-based,
thus requiring all models to be grouped inside a single Eclipse project directory.

3 Architecture Model

The Palladio modeling tool allows us to specify a software system architecture in
order to run simulations on these systems. We discuss now how the Kubernetes

6

containerized architecture has been abstracted and recreated inside Palladio in
order create a simulation tool (called KubeSim). In the following, we introduce
the different structural and behavioural models.

3.1 Component Repository Model and SEFF diagrams

Fig. 2. Component Repository Model for all Simulations.

(a) Kubernetes run()

(b) Pod elaborateRequest()

(c) Master load balancing

Fig. 3. System Behaviour Models (SEFFs).

A Component Repository
Model describes interfaces, com-
ponents and dependencies be-
tween elements of the system
architecture. Fig. 2 illustrates
how the Kubernetes architec-
ture has been abstracted and
represented as a Repository
model. In the model, a ser-
vice is provided through Ku-
bernetes, from pod governed
databases, and accessible to a
user via an internet connected
device. For that reason, two in-
terfaces are declared: one for
the Kubernetes system (IKu-
bernetes), performing a void
run() action (simulate service
up and running system call),
and another for the pod com-
ponent (IPod). Furthermore,
one component has been cre-
ated for the IKubernetes in-
terface, named simply Kuber-
netes, and one for the IPod, named Pod. The Master component acts as the
controller for load-balancing based on self-adaptive resource utilization rules.

7

Each component of the Component Repository Model has its own Service
Effect Specification (SEFF), expressed in the form of a behavioral model. Fig. 3
shows the three SEFF models for the Kubernetes, Pod and Master component
actions. Since the Kubernetes component requires the IPod interface to work,
its behavior is reflected in an ExternalCallAction for the elaborateRequest() ac-
tion. The action on the Pod component is performed internally. Moreover, in
this SEFF diagram we specified actual resource demands of the system call.
Resource demands are specified for the CPU (computational resource) and the
HDD (storage resource) as hardware resources, in the form of stochastic expres-
sions for work-units per second. The last Service Effect Specification models two
components instead of only one: Pod1 and Pod2. This reconnects with Compo-
nent Repository Model and the two arrows exiting from the Master component
representing two instances of a Pod element. Note, that for simplicity, we present
two sample pods here.

Here the execution flow is executed by a so called BranchAction, that has
the task to distribute and balance the workload between the pod components.
In this case, it is configured to reflect the default Kubernetes balancing rule that
distributes the work evenly across all system pods. However, this setting could
be varied in experiments and used like a virtual knob to tune balancing settings
of the Master controller to whatever value of interest.

3.2 System Model

The System Model captures the composite structure of the whole Kubernetes
systems architecture (not displayed as a diagram for space reasons). The sys-
tem architecture for this model uses the available components declared in the
Component Repository Model to constitute a complete component-based soft-
ware system. This model includes dependencies between the various assembly
contexts (i.e., components) of the Kubernetes architecture. The entire system
provides its service over the Kubernetes platform, i.e., through the IKubernetes
interface. This interface is connected to the assembly elements representing the
Kubernetes component. Since Kubernetes requires pods to run the service, it is
connected with a component providing the IPod interface. However, because the
cluster is self-adaptive, we cannot directly connect the Kubernetes assembly to
the pods, but use the Master controller node as an intermediary. The system also
requires two pod interfaces. We only need to instantiate two assembly contexts
for two pods and then connect the two with the Master component.

3.3 Execution Environment and Component Allocation Models

Based on the system model, we declare and allocate resources for our system
environment. For that, there are the so called Deployment Models, which include
the Execution Environment Model and the Component Allocation Model.

We have three resource components: Kubernetes, Pod1 and Pod2. Each pod
has a CPU unit with scheduling policy set to Processor Sharing (that is an ap-
proximation of a Round-Robin resource management strategy), and an HDD

8

Fig. 4. Execution Environment Model configured for a Single Experiment.

with scheduling policy set to First-Come-First-Serve (that is a typical behav-
ior for hard disk drives). The Processing Rates of CPUs and HDDs can vary,
therefore the values in this model are purely indicative of one single experi-
ment configuration. The Execution Environment Model, see Fig. 4, also provides
other settings for resources, like the Number of Replicas, Mean Time To Failure
(MTTF) and Mean Time To Repair (MTTR). In order to focus on performance,
these have been set to standard values, i.e., resp., 1, 0.0 and 0.0. Kubernetes con-
tainers also have CPU and HDD declared resource demands (with Processing
Rate set to 10 for both), with default settings for Number of Replicas, MTTF
and MTTR. The three containers are connected via a LinkingResource compo-
nent, that could act as a fast network, with Latency set to 0, Throughput set to
1,000,000 and Failure Probability set to 0.0.

3.4 Usage Model

Fig. 5. Usage Model configured for one
Experiment.

The Usage Model contains a Service Effect
Specification diagram specifying the sys-
tem call. The Usage Model provides two
different workloads for the system under
study: an OpenWorkload and a Closed-
Workload. For the OpenWorkload, the
user interarrival time could be specified
in seconds, and the number of users com-
ing to use the system will vary from one

9

simulation run to the other. With the ClosedWorkload we can specify the user
population (i.e. the number of active users in our system), and also the single
user think time (i.e. the pause the user after each run() action, in seconds).

4 Evaluation and Discussion

In the experimental evaluation, we focus on simulations of the Kubernetes im-
plementation as it is currently available, with the HPA component.

4.1 Experimental Evaluation

Our aim was to aid specification for container cluster scaling rules. The main
experimental goal for the project focused on evaluating suitable system perfor-
mance. We translate this into a simple rule: keep idle time less or equal to 50%
(not to waste resource power) and concurrent active job time less or equal to
25% (not to experience long overload periods that impacts on performance), for
both CPU and HDD components of the pods.

As a starting point, we considered different workload patterns, distinguished
in terms of three qualitative values: low, medium and high, i.e., workloads with-
out unexpected fluctuations in relation to the three main values.

To set a desired workload inside Palladio, we use the SEFF diagram describ-
ing the core system function, and specify the resource demand in the form of a
stochastic expression. In our case, the SEFF diagram to be modified is the one of
elaborateRequest() action, see Fig. 3 above. We keep the HDD expression fixed
at 100 processing unit rate for all workload types, while for the CPU compo-
nent the stochastic values (expressed in a joint Probability Mass Function with
double values, i.e. DoublePMF) that have been used for the different workloads
are: DoublePMF[(10.0;0.1)(20.0;0.8)(30.0;0.1)] for low, i.e. 10% of the time the
CPU power used is being used at 10%, 80% of the time it is being used at 20%
of power and in the remaining 10% of the time it is being used at 30% of power;
and correspondingly DoublePMF[(40.0;0.1)(50.0;0.8)(60.0;0.1)] for medium and
DoublePMF[(70.0;0.1)(80.0;0.8)(90.0;0.1)] for high.

The specification of a pod resource demand can been adjusted. Particularly,
the CPU and HDD processing rate are the ones in which we are highly interested
in, because they reflect the specification rules for assigning Kubernetes pods
resource demands limits. The variable field that need to be changed for this
time is the Execution Environment model. Fig. 6 shows the worst and best case
results for CPU and HDD resources for different workload patterns and assumed
processing rates. The values for CPU and HDD processing rate varied from 2 to
18 during different simulations where we followed an experimental progression
based on observations obtained through the different simulating runs.

For another set of experiments, we also changed the population number,
which describes the number of active users inside the system at simulation time,
see Fig. 7,. The aim here was to better judge the impact the number of active
users could have on overall system performance. We tested the system with

10

Fig. 6. Resource Utilization (idleness) for different Workloads – Best and Worst Case.

1, 3 and 5 users that were equally distributed between the pods, showing an
increasingly reduced idle for higher CPU loads as the population increases.

4.2 Discussion

Our paper has focused on creating an environment to simulate the behavior of
self-adapting (scaling) container cluster architectures. We presented the models
implemented in the Palladio environment, thus creating a simulation bench by
defining the architecture of a systems and its resource. We have demonstrated
that running simulations of applications with Kubernetes autoscaling strategies
allows investigating the architectural structure of a system and its behavioural
properties. This can lead to greater efficiency in implementations as the sample
resource utilization experiments have shown. KubeSim tool is useful when try-
ing to obtain specification values to identify and configure for the controller. We
were able to understand and investigate underlying functions and characteris-
tics of self-adaption in Kubernetes – for example the case we experimentally ob-
served that CPU and HDD performances were impacted by each other’s settings.
KubeSim is thus beneficial for application developers aiming to use Kubernetes.

We also look at limitations and threats to the validity of our work. We can
start our the threats to validity analysis by looking to a central and potential
critical aspect of our work, the experiments sample field. While running simula-
tions for KubeSim, we considered only a small portion of experimental values.
Concretely, we restricted our sampling field as follows:

– Architecture: we took a scenario with a simplifying two pod system for il-
lustrative purposes. We can, however, assume that our experimental results

11

Fig. 7. Aggregated Workload Results for different User Populations.

would apply also to bigger systems composed by more that two pods and
used by a greater population of users as the results so far indicate linearity.

– Uncertainty: KubeSim was not exposed to unpredictable workloads and fail-
ures (as in real world platforms), thus restricting even more our sample fields
and leading to more uncertainty in the validity of the results.

– Scale: applies to all KubeSim settings, for which we used small numerical
values for input variables (e.g., processing and user think time in the usage
model). As argued above, linearity here is possible, but not yet proven.

A final remark on restricting the sample field is in regards to the load balancer
policy, for which we only tested the implemented equal balancing load rule.
Our advanced controller model is a first step towards proposing an improved
Kubernetes scaling strategy, which however is beyond the scope of this paper.

However, evaluating our simulation environment under all possible scenarios
was beyond the scope of this paper. The overall aim was to point out a valid
alternative to already present performance engineering and evaluation methods
for self-adaptive container cluster systems (i.e. those who separates software
engineering analysis for the architecture and the autoscaling strategies parts).

5 Towards an Advanced Controller Model

The controller implemented in Kubernetes and modelled above uses equal work-
load distribution as the load balancing strategy. One of our goals is to explore
advanced controller settings for Kubernetes that could be implemented in an
improved HPA component. Our proposal shall take into account that platform
and application are not controlled by the same organisation, i.e., that some load
properties of platform resources (i.e., Kubernetes core components offered by a

12

cloud provider) are not visible for the Kubernetes user. The general situation is
that in shared virtualised environments, third parties provides some resources
that can be directly observed (e.g., using performance metrics such as response
time) while others remain hidden from the consumer (e.g., the reason behind
performance or workload anomalies, the dependency between the affected nodes
and container, etc). In order to improve the workload balancing and autoscaling
capability, we can enhance the MAPE-K based controller here. We introduce a
core model for anomaly detection and analysis for a cluster environment that
automatically manages resource workload fluctuations. This can be implemented
as an extension of the Palladio model towards dynamic auto-scaling, which in
the current version only considers a static load balancing strategy.

Fig. 8. HHMM for Auto-Scaling Workload for Cluster-Container Environments.

We differentiate two situations in which response time fluctuations occur:

– Hidden states might show anomalous behavior of the resource that might
needs to be remedied by the controller (unwanted behavior such as overload,
or appreciated behavior like underload).

– Emission or observation of behaviour for the user (indicating possible fail-
ure), which might result in failure if caused by a faulty hidden state.

To address this, we propose Hidden Markov Models (HMMs) to map the ob-
served failure behaviors of a system resource to its hidden anomaly causes (e.g.,
overload) and to predict the occurrence of the anomaly in the future. A Hidden
Markov Model (HMM) is a statistical Markov model in which the system be-
ing modeled is assumed to be a Markov process with hidden states. In simple
Markov models, state transition probabilities are the only parameters, while in
the hidden Markov model, there are observable emissions (e.g., in the form of
response time data), dependent on the workload state.

To reflect the layered nature of application, platform and infrastructure in
a Kubernetes system, we utilize a specific variant of HMM, that of Hierarchi-
cal Hidden Markov Models (HHMM) [2], see Fig. 8. HHMMs are better suited
here than HMM in describing the uncertain probability distribution at node and

13

cluster level. HHMM generate sequences by a recursive activation of one of the
substates (nodes) of a state (cluster). This substate might also be hierarchically
composed of substates (here pods). The HHMM decides on transition probabili-
ties a possible (hidden) cause for an observed anomaly and then decides how to
transfer load between nodes to reduce undesired performance degradations.

Each state hidden state (internal node, production pod, root cluster) may be
in an overload, underload or normal load state. Each workload is associated with
response time observations that are emitted from a production state. The exis-
tence of anomalous workload in one state not only affects the current state, but
possibly substates on the other level. The edge direction in the figure indicates
the dependency between states. We can use vertical transitions for identifying
the fault and we use horizontal transitions to show the fault that exists between
states and to trace the fault/failure mapping between states at the same level.

6 Related Work

In [5,6], resource management and auto-scaling rules for self-adaptive systems
was investigated, focused mainly on VM-based cloud platforms. As part of their
experimental approach, a parameterized architecture model when running sim-
ulations has been used. That is, simulations were run on base of stochastic
expressions, which reflected each systems component behavior. This allowed fine
adjustments while setting adaptation rules for the simulation environment. We
have followed these and similar approaches, but add a novel perspective in the
advanced controller model here that takes the hidden/observable distinction into
account for a hierarchically organised architecture.

To the best of our knowledge, there is no Kubernetes simulation environment.
Models of performance concerns and resource management has been discussed
[11], but a simulation tool has not been created.

In addition to work on models for self-adaptive cloud systems for perfor-
mance and workload management, we also look at the simulation tool landscape.
This allows us to justify our decision to choose Palladio as the model. Often,
load balancing strategies can be formalised and simulated in tools like MatLab.
However, this would not allow us to model the architecture in terms of appli-
cations, platform and infrastructure concerns. As we target the KubeSim tool
to application developers and users of Kubernetes and similar tools, an explicit
architecture model is of critical importance. The same argument also applies to
other simulation tools such as CloudSim [1].

7 Conclusions

We investigated performance engineering solutions for self-adaptive container
cluster systems, with the purpose of finding an efficient way to determine and
express autoscaling rules for such systems, in order to improve platform settings.

We created a simulation tool for Kubernetes using the Palladio platform,
capable of delivering an easy to use simulation bench. KubeSim offers a developer

14

the possibility of testing such a system by tuning different settings and metrics
of the system. In fact, the novelty of KubeSim as a Kubernetes performance
simulation tool is to enable reliable performance analysis with the effort of having
to implement prototype implementations. With the advanced controller model,
we also target a deeper investigation beyond application development.

As future work, KubeSim could include the possibility of considering faults
types. Another improvement would be considering sensor noise. That is assuming
and considering that the systems sensor is exposed to noise derived from hosting
platform connection. Again, a last upgrade, always related to fault consideration,
could be implementing a fault prediction algorithm, so that the system would
be aware of an oncoming error and scale resource on its base.

Another aim is to integrate the advanced controller model in KubeSim. This
would allow studying alternative strategies for the Kubernetes HPA component.

References

1. CloudSim: A Framework for Modeling and Simulation of Cloud Computing In-
frastructures and Services. Retrieved from: http://www.cloudbus.org/cloudsim/.

2. S. Fine, Y. Singer, N. Tishby. The hierarchical hidden markov model: Analysis
and applications. Machine Learning, 32:4162, 1998.

3. R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L.E. Lwakatare, C. Pahl, S. Schulte,
J. Wettinger. Performance Engineering for Microservices: Research Challenges
and Directions. Intl Conference on Performance Engineering Companion. 2017

4. P. Jamshidi, C. Pahl, N.C. Mendonca, J. Lewis, S. Tilkov. Microservices: The
Journey So Far and Challenges Ahead. IEEE Software 35 (3), 24-35. 2018.

5. P. Jamshidi, A. Ahmad, C. Pahl, Autonomic Resource Provisioning for Cloud-
Based Software, SEAMS, 2014.

6. P. Jamshidi, C. Pahl, N.C. Mendonca, Managing Uncertainty in Autonomic Cloud
Elasticity Controllers, IEEE Cloud Computing, 2016.

7. Introduction to Kubernetes. Retrieved from: https://x-
team.com/blog/introduction-kubernetes-architecture/. 2018.

8. Autoscaling in Kubernetes. Retrieved from: http://blog.kubernetes.io/2016/07/
autoscaling-in-kubernetes.html. 2018.

9. H.C. Lim et al., Automated Control in Cloud Computing: Challenges and Op-
portunities, Workshop Automated Control for Datacenters and Clouds, 2009.

10. T. Lorido-Botran, J. Miguel-Alonso, J.A. Lozano, A Review of Auto-scaling Tech-
niques for Elastic Applications in Cloud Environments, J. Grid Comp 12(4), 2014.

11. V. Medel, O. Rana, J.A.l Banares, U. Arronategui. Modelling performance &
resource management in kubernetes. Intl Conf on Utility and Cloud Comp. 2016.

12. C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee. A container-based edge cloud PaaS
architecture based on Raspberry Pi clusters. Future IoT & Cloud Workshop. 2016.

13. C. Pahl, A. Brogi, J. Soldani, P. Jamshidi. Cloud Container Technologies: a State-
of-the-Art Review. IEEE Trans. on Cloud Computing. 2017.

14. Palladio Simulator. Retrieved from: http://www.palladio-
simulator.com/about palladio/. 2018.

15. R.H. Reussner, et al. Modelling and Simulating Software Architecture – The
Palladio Approach, 2016.

16. L.M. Vaquero, L. Rodero-Merino, R. Buyya, Dynamically Scaling Applications
in the Cloud, ACM SIGCOMM Computer Comm. Rev. 41(51), 2011.

15

On enhancing the orchestration of
multi-container Docker applications

Antonio Brogi1, Claus Pahl2, and Jacopo Soldani1

1 University of Pisa, Pisa, Italy {brogi,soldani}@di.unipi.it
2 Free University of Bozen-Bolzano, Bolzano, Italy claus.pahl@unibz.it

Abstract. After introducing Docker containers in a nutshell, we discuss
the benefits that can be obtained by supporting enhanced descriptions of
multi-container Docker applications. We illustrate how such applications
can be naturally modelled in TOSCA, and how this permits automating
their management and reducing the time and cost needed to develop
such applications (e.g., by facilitating the reuse of existing solutions, and
by permitting to analyse and validate applications at design-time).

Keywords: Docker · TOSCA · orchestration · cloud applications

1 Introduction

Containers are emerging as a simple yet effective solution to manage applications
in PaaS cloud platforms [18]. Containers are also an ideal solution for SOA-based
architectural styles that are emerging in the PaaS community to decompose
applications into suites of independently deployable, lightweight components,
e.g., microservices [2,24]. These are natively supported by container-based vir-
tualisation, which permits running components in independent containers, and
allows containers to interact through lightweight communication mechanisms.

However, to fully exploit the potential of SOA, container-based platforms
(e.g., Docker — www.docker.com) should enhance their support for selecting the
containers where to run the components of an application, and for orchestrating
containers to build up a multi-container application. To that end, there is a
need for a modelling language to describe the features offered by a container (to
satisfy the requirements of an application component), to orchestrate containers
to build multi-container applications, and to deploy and manage them in clusters.

Our objective here is to highlight the need for such language, by illustrating
its potential benefits on a concrete containerisation framework like Docker. In
this context, the main contributions of this paper are:

1. We discuss the benefits, but also the limitations of Docker, specifically with
respect to composition and orchestration in multi-container applications.

2. We propose a way to represent multi-container Docker applications in TO-
SCA [16], the OASIS standard for orchestrating cloud applications, as an ex-
ample to discuss the advantages of enhancing their orchestration (e.g., easing
the selection and reuse of existing containers, reducing time and cost for de-
veloping multi-container applications, automating their management, etc.).

16

www.docker.com

2 A. Brogi et al.

This paper is organised as follows. Sect. 2 provides some background on TOSCA.
Sects. 3 and 4 provide an introduction to Docker and discuss its current benefits
and limitations, respectively. Sect. 5 discuss the advantages of enhancing the or-
chestration of multi-container Docker applications with TOSCA. Finally, Sects. 6
and 7 discuss related work and draw some concluding remarks, respectively.

2 Background: TOSCA

TOSCA [16] (Topology and Orchestration Specification for Cloud Applications)
is an OASIS standard for specifying portable cloud applications and automating
their management. TOSCA provides a modelling language to describe the struc-
ture of a cloud application as a typed topology graph, and its management tasks
as plans. More precisely, each applications is represented as a service template
(Fig. 1), consisting of a topology template and of optional management plans.

Fig. 1. TOSCA service template.

The topology template is a typed directed graph describing the structure of
an application. Its nodes (node templates) model the application components,
while its edges (relationship templates) model the relationship among those com-
ponents. Both node templates and relationship templates are typed by means of
node types and relationship types. A node type defines (i) the observable proper-
ties of a component, (ii) its requirements, (iii) the capabilities it offers to satisfy
other components’ requirements, and (iv) its management operations. Relation-
ship types describe the properties of relationships occurring among components.

Plans permit describing the management of an application. A plan is a work-
flow orchestrating the management operations offered by the application com-
ponents to address (part of) the management of the whole application.

3 Docker in a nutshell

Docker is a Linux-based platform for developing, shipping, and running applica-
tions through container-based virtualisation. Container-based virtualisation ex-

17

On the orchestration of multi-container applications 3

ploits the kernel of the host’s operating system to run multiple guest instances.
Each guest instance is called a container, and each container is isolated from oth-
ers (i.e., each container has its own root file system, processes, memory, devices
and network ports).

Containers and images. Each container packages the applications to run, along
with whatever software they need (e.g., libraries, binaries, etc.). Containers are
built by instantiating so-called Docker images.

A Docker image is a read-only template providing the instructions for creat-
ing a container. It is built by layering multiple images, with the bottom image
being the base image, and with each image being the parent of the image right
above it. A Docker image can be created by loading a base image, by performing
the necessary updates to that image, and by committing the changes. Alterna-
tively, one can write a Dockerfile, which is a configuration file containing the
instructions for building an image3.

It is also possible to look for existing images instead of building them from
scratch. Images are stored in registries, like Docker Hub (hub.docker.com).
Inside a registry, images are stored in repositories. Each repository is devoted to
a software application, and it contains different versions of such software. Each
image is uniquely identified by the name of the repository it comes from and by
the tag assigned to the version it represents, which can be used for retrieving it.

Volumes. Docker containers are volatile. A container runs until the stop com-
mand is issued, or as long as the process from which it has been started is
running. By default, the data produced by a container is lost when a container
is stopped, and even if the container is restarted, there is no way to access to
the data previously produced. This is why Docker introduces volumes.

A volume is a directory in a container, which is designed to let data persist,
independently of the container’s lifecycle. Docker therefore never automatically
deletes volumes when a container is removed, and it never removes volumes that
are no longer referenced by any container. Volumes can also be used to share
data among different containers.

Docker orchestration. The term orchestration refers to the composition, coordi-
nation and management of multiple software components, including middleware
and services [15]. In the context of container-based virtualisation, this corre-
sponds to multi-component applications, whose components independently run
in their own containers, and talk each other by exploiting lightweight communi-
cation mechanisms.

Docker supports orchestration with swarm and compose. Docker swarm per-
mits creating a cluster of Docker containers and turning it into a single, virtual
Docker container (with one or more containers acting “masters” and scheduling
incoming tasks to “worker” containers). Docker compose permits creating multi-
container applications, by specifying the images of the containers to run and the

3 The latter provides a more effective way to build images, as it only involves writing
some configuration instructions (like installing software or mounting volumes), in-
stead of having to launch a container and to manually perform and commit changes.

18

hub.docker.com

4 A. Brogi et al.

interconnections occurring among them. Docker compose and Docker swarm are
seamlessly integrated, meaning that one can describe a multi-component appli-
cation with Docker compose, and deploy it by exploiting Docker swarm.

4 Benefits and limitations of Docker

Docker containers feature some clear benefits. Firstly, they permit separation of
concerns. Developers only focus on building applications inside containers and
system administrators only focus on running containers in deployment environ-
ments. Previously, developers were building applications in local environments,
passing them to system administrators, who could discover (during deployment)
that certain libraries needed by the applications were missing in the deployment
environments. With Docker containers, everything an application needs to run
is included within its container.

Docker containers are also portable. Applications can be built in one environ-
ment and easily shipped to another. The only requirement is the presence of a
Docker engine installed on the target host.

Furthermore, containers are lightweight and fast to launch. This reduces de-
velopment, testing and deployment time. They also improve the horizontal scala-
bility of applications, as it is easy to add or remove containers whenever needed.

On the other hand, limitations do exists. Docker currently does not support
search mechanisms other than looking for the name and tage of an image inside
a registry [9]. There is currently no way to describe the internals of an image,
e.g., the features offered by a container instantiated from an image, or the soft-
ware it supports. A more expressive description of images would enable more
powerful reuse mechanisms (e.g., adaptation of existing images), hence reducing
the time needed to retrieve images and develop container-based applications.

Further limitations affect the orchestration of complex applications. Con-
sider, for instance, a multi-component application made of three components,
i.e., a web-based GUI, which depends on a back-end API to serve its clients,
which in turn connects to a database to store application data. Currently, Docker
does not provide a way to describe the runtime environment needed to run each
component. A developer is hence required to manually select the image where
to run each component, to extend it (by adding the component and its runtime
dependencies), and to package it into a new image. The obtained images can
then be composed with Docker compose to build a multi-container Docker ap-
plication, which however has no explicit information about which component is
hosted on which image nor on which component is interconnected on each other.
Everything is hidden in a kind of “black-box” view due to the lack of information
on the internals of Docker containers [10].

It is not possible to distinguish between simple dependencies determining the
deployment ordering from persistent connections to set up. For instance, in the
aforementioned application, Docker compose would include two interconnections,
one between the containers packaging the GUI and the API, and one between
those packaging the API and the database. However, the former interconnection

19

On the orchestration of multi-container applications 5

may be unnecessary (especially in a multi-host deployment scenario), as the GUI
may not require to set up a connection to the API. The GUI may indeed just
require to be deployed after the API and to be configured so to forward user
queries to the actual endpoint offered by the API.

Additionally, despite Docker compose and Docker swarm are seamlessly in-
tegrated, limitations do exists4. For instance, when a compose application is
deployed with swarm, the latter may not be able to manage all interdependen-
cies among containers, which may result in deploying all containers on the same
host or in not being able to automatically deploy all containers. In the latter
case, one would hence be required to manually complete the deployment.

A more expressive specification language (e.g., TOSCA [16]) would permit
overcoming these limitations. By describing the environment needed to run an
application component, it would be possible to specify what the component
needs, and then to automatically derive the images of the underlying infrastruc-
ture (e.g., by exploiting existing reuse techniques [11,20]). It would also permit
describing the management of a complex multi-component application by or-
chestrating the management of its components.

5 Orchestrating multi-container applications in TOSCA

In this section, we first show how multi-container applications can be represented
in TOSCA (Sect. 5.1). We then illustrate how this permits enhancing the or-
chestration of multi-container Docker applications (Sect. 5.2), as well as better
exploiting container-oriented design patterns (Sect. 5.3).

5.1 Multi-container applications in TOSCA

A multi-container application essentially corresponds to a multi-component ap-
plication, where each component is hosted on a container. A multi-container
Docker application can be represented by a TOSCA service template, whose
topology nodes represent the application components, the containers they need
to run, and the volumes that must be mounted by containers. The relationships
instead model the dependencies between components, containers and volumes
(e.g., hosting a component on a container, connecting components and/or con-
tainers, or attaching a volume to a container). Plans then orchestrate the oper-
ations offered by the nodes to describe the management of a whole application.

We hence need the types to include the above mentioned nodes and relation-
ships in a topology template. For the nodes, we can exploit the TOSCA types
defined in [10], which permit distinguishing (a) Software components, (b) Con-
tainers and (c) Volumes (Fig. 2). For the relationships, we can instead rely on
the TOSCA normative relationship types [16].

Without delving into the details on the modelling (which can be found
in [10]), we show how it can be exploited to represent the multi-container Docker

4 A thorough discussion on this is available at docs.docker.com/compose/swarm.

20

docs.docker.com/compose/swarm

6 A. Brogi et al.

(a) (b) (c)

Fig. 2. TOSCA node types for multi-container Docker applications [10].

(a)

(b)

Fig. 3. Examples of (a) a topology template modelling a multi-container Docker ap-
plication, and of (b) a plan orchestrating its deployment.

application mentioned in Sect. 4 (which consists of three interconnected com-
ponents — i.e., a GUI, an API and a database). With the above mentioned
TOSCA types, we can go beyond Docker compose (that only permits identify-
ing the images of three containers, and specifying the interconnection occurring
between them). As illustrated by Fig. 3.(a), we can describe components and
containers separately, and explictly specify which container is hosting a compo-
nent (e.g., the API is hosted on the Maven container), the dependencies among
components (e.g., the API connects to the database) and the necessary volumes.

We can also program the management of the application as a whole. Each
component indeed exposes the operations that permit managing its lifecycle,
which can then be orchestrated to accomplish application management tasks. A
concrete example is given in Fig. 3.(b), which displays a BPMN-like plan orches-
trating the deployment of the multi-container Docker application in Fig. 3.(a).

21

On the orchestration of multi-container applications 7

5.2 Orchestrating multi-container applications with TOSCA

One may argue whether the effort of defining multi-container Docker applica-
tions in TOSCA really pays off. As we anticipated in Sect. 4, a model like that
discussed in the previous section permits enhancing the orchestration of multi-
container Docker applications in three main ways.

Searching for images Docker search capabilities are currently limited, as Doc-
ker only permits looking for names and tags of images in registries [9].
TOSCA permits overcoming such limitation, as it also permits describing the
internals of an image (like the features that will be offered by a container
instantiated from an image, or the software distributions it will support).
This enables more powerful discovery mechanisms.

For instance, in [8] we show how to automatically discover the Docker
containers offering the runtime support needed by the components forming
an application. The host requirements of GUI and API can be left pending,
by only describing the runtime capabilities that must be provided by the
container that can satisfy them (e.g., which software distribution they must
support, which operating system they must run, etc.). Then, a concrete
implementation like that in Fig. 3 can be automatically derived by reusing
existing Docker containers. As we illustrated in [8], such an approach can
drastically reduce the time and costs needed for developing and maintaining
container-based applications

Design-time validation TOSCA permits explicitly indicating which are the
requirements needed to run a component, which capabilities it provides to
satisfy the requirements of other containers, and how requirements and ca-
pabilities are bound one another. This permits validating multi-container
applications at design-time, by checking whether the requirements of a com-
ponent have been properly satisfied (e.g., with the validator presented in [6]).

The same is currently not possible with Docker, which is not providing
enough information to determine whether all interdependencies have been
properly settled. This is because Docker compose only permits listing the
images of containers to run, and the interconnections among them.

Automation of application management We can exploit TOSCA plans to
describe only once all the management of an application (by orchestrating
the management operations of the application components). For instance,
we can program how to coordinate the deployment of all the components of
an application with a single plan (as exemplified in Fig. 3.(b)).

The management of multi-container Docker applications can be further
automated by exploiting management protocols [5], which permit specifying
the behaviour of the nodes forming a TOSCA application, and to automati-
cally derive the management behaviour of an application by composing the
management protocols of its nodes. This permits automating various useful
analyses, like determining whether management plans are valid, which are
their effects (e.g., which application configuration is reached by executing a
plan, or whether it generates faults), or which plans permit reaching certain
application configurations or recovering faulted applications.

22

8 A. Brogi et al.

The above remarks highlight how Docker (and, more generally, a container-based
framework) would enhance its orchestration capabilities by being integrated with
expressive specification languages, such as TOSCA. This is also concretely illus-
trated and evaluated by the work in [8] and [10]. The latter present the compo-
nents of the TosKer open-source enviroment, by also empirically showing how
the integration of Docker with a language like TOSCA can provide some of the
aforementioned benefits.

It is also worth noting that, even if we exploited a simple application (with
just three components) for illustration purposes, this is sufficient to illustrate the
positive impact of an enhanced orchestration support for Docker-based frame-
works. By considering complex enterprise applications [12], which can contain a
much higher number of interdependent components, the potential and impact
of allowing to search, reuse, orchestrate and verify multi-container applications
can be even more significant. This is currently not supported by any of the
frameworks that we will discuss in Sect. 6.

5.3 Container-oriented design patterns in TOSCA

TOSCA templates describe the structure of (parts of) multi-component appli-
cations. This aligns with the idea of design patterns, which also describe the
structure of (parts of) software applications [1], and which can be provided as
templates to be directly included into TOSCA applications [4].

From an architecture perspective, multi-container Docker applications are
often designed according to the microservices architectural style [13] (as Docker
perfectly matches the microservices’ requirement of independent deployability).
Hence, microservices design patterns constitute a concrete example of design
patterns that can be provided as predefined TOSCA templates, to support and
ease the development of new multi-container Docker applications.

A catalogue of such design patterns is presented in [21]. Three main categories
of patterns emerge, i.e., orchestration and coordination patterns (capturing com-
munication and coordination from a logical perspective), deployment patterns
(reflecting physical deployment strategies for services on hosts through Docker
containers), and data management patterns (capturing data storage options).
All patterns falling within such categories align with our discussion on how to
enhance the orchestration of multi-contained Docker applications with TOSCA.
They indeed provide solutions for orchestrating the management of the compo-
nents and containers forming multi-container applications, and for managing the
Docker volumes storing their data.

We below provide a list of the patterns falling in the above mentioned cate-
gories, which can provided as predefined templates to support the development
of multi-container Docker applications in TOSCA.

Orchestration and coordination patterns Within this category, we have
design patterns for service composition and discovery.
Service Composition → API Gateway. An API Gateway is an entry point
to a system. It provides a tailored API for each client to route requests

23

On the orchestration of multi-container applications 9

to appropriate containers, aggregate the required contents, and serve them
back to the clients. The API Gateway can also implement some shared logic
(e.g., authentication), and it can serve as load balancer. Its main goal is
to increase system performance and simplify interactions, thus reducing the
number of requests per client.
Service Discovery → Client-Side Discovery, Server-Side Discovery. Multiple
instances of the same service usually run in different containers. The com-
munication among them must be dynamically defined and the clients must
be able to efficiently communicate to the appropriate microservice that dy-
namically change instances. For this purpose, service discovery dynamically
supports the resolution addresses. For the Client-Side Discovery design pat-
tern, clients query a registry, select an available instance, and make a request
directly. For the Server-Side Discovery design pattern, clients make requests
via a load balancer, which queries a registry and forwards the request to
an available instance. Unlike the API-Gateway pattern, this pattern allows
clients and containers to talk to each other directly.

Deployment patterns Within this category, we the most common pattern is
the Multiple Service per Host design pattern. According to such pattern,
each service in an application is deployed in a separate container, containers
are distributed among a cluster of hosts, by allowing multiple containers to
run on a same host. There is also a Single Service per Host design pattern,
but it reflects a very uncommon deployment strategy.

Data management patterns This category of patterns focuses on data stor-
age options for applications composed by multiple services and containers.
Database-per-Service. With this design pattern, each service accesses its pri-
vate database.
Database cluster. The aim of this design pattern is storing data on a database
cluster. This improves scalability, allowing to move the databases to dedi-
cated nodes.
Shared database server. The aim of this design pattern is similar to that of
the Database Cluster design pattern. However, instead of using a database
cluster, all services access a single shared database.

To illustrate the usefulness of the above listed patterns, we refer back to example
in Sect. 4. We discussed a layered architecture with GUI, API and database
components. In such scenario, the API Gateway Pattern suggests an abstraction
that permits routing user requests not only to a single container, but also to
different containers (e.g., for different databases). Automatic deployment using
Docker compose and Swarm, as also discussed, can also be modelled by exploiting
the deployment patterns we introduced.

6 Related work

Despite Docker permits creating multi-container applications (with Docker com-
pose) and ensuring high-availability of containers (with Docker swarm), its cur-
rent orchestration capabilities are limited. Docker only permits specifying the

24

10 A. Brogi et al.

images to run, and the interconnections occurring among the containers instan-
tiated from such images. It is not possible to search for images other than by
looking for their names and tags in registries, there is no way to validate multi-
container applications at design-time, and there is a lack of support for automat-
ing the management of the components in multi-container applications.

Multi-container Docker solutions can also be created by organising containers
into clusters. Each of these clusters consists of host nodes that hold various
containers with common services, such as scheduling and load balancing. This
can be done with Mesos, Kubernetes, Marathon, and Cloud Foundry’s Diego.

Mesos (mesos.apache.org) is an Apache cluster management platform that
natively supports LXC and Docker. It organises distributed resources into a
single pool, and includes a distributed systems kernel that provides applications
with resource management and scheduling. However, Mesos does not allow to
structure clusters, nor to orchestrate them.

Kubernetes (kubernetes.io) is a cluster management and orchestration so-
lution at a higher level than Mesos, as it permits structuring clusters of hosts
into pods, which are in charge of running containers. However, even though clus-
ters can be structured into pods of containers, Kubernetes still lacks a proper
support for orchestrating multi-container applications, by only permitting to
specify the images to run through their names and tags. This results in limita-
tions analogous to those we identified for Docker compose and Docker swarm
(see Sect. 4): It is not possible to abstractly describe the runtime environment
needed to run each component (to be then automatically implemented by adopt-
ing reuse techniques), and developers are hence required to manually select the
image where to run each component, to extend it, and to package the obtained
runtime into a new image. The obtained images can then be composed to build
a multi-container application, which however has no explicit information about
which component is hosted on which image nor about dependencies occurring
among components (as the only dependencies that can be modelled are the in-
terconnections occurring among containers).

Marathon (mesosphere.github.io/marathon) and Diego [22] are alternative
solutions for managing and orchestrating clusters of containers (on top of Mesos
and Cloud Foundry, respectively). Their objectives, as well as their limitations
in orchestrating multi-container applications, are similar to those of Kubernetes.

Rocket (coreos.com/rkt) is a container framework alternative to Docker,
which tries to address some of the limitations of Docker, like the search and
composition of container images. Images of Rocket containers can indeed be
composed to form complex applications, and there is a dedicated protocol for
retrieving images. However, Rocket still lacks a way of specifying topology and
orchestration of multi-container applications.

To summarise, currently existing platforms lack support for the high-level specifi-
cation of multi-container (Docker) applications, and this limits their capabilities
for searching and reusing container images, for orchestrating them to build up
multi-container applications, and for verifying designed applications.

25

mesos.apache.org
kubernetes.io
mesosphere.github.io/marathon
coreos.com/rkt

On the orchestration of multi-container applications 11

The possibility of employing TOSCA for enhancing the orchestration of
multi-container applications was suggested in [17]. In this paper, we try to con-
cretise such by providing a discussion of its benefits.

7 Conclusions

The management of multi-component applications across multiple and hetero-
geneous clouds is becoming commonplace [1,14]. Additionally, with the advent
of fog and edge clouds, there is an increasing need for ligthweight virtualisation
support [7,19]. In this scenario, containers can play an important role, especially
to decompose complex applications into suites of lightweight containers running
independent services [13,23]. However, currently available platform offer limited
support for specifying and orchestrating multi-container applications.

In this paper we have illustrated how a modelling language like TOSCA
would enhance the orchestration of multi-container applications, thus overcom-
ing current limitations. While utilising TOSCA for orchestrating container-based
applications requires some additional initial effort, it permits composing and
automatically orchestrating them to build and manage multi-container appli-
cations [10]. TOSCA can also empower the reuse of containers, by allowing
developers to search and match them based on what they feature [8].

Additionally, despite both TosKer [8,10] and Cloudify (getcloudify.org)
provide a basic support for deploying multi-container Docker applications spec-
ified in a simplified profile of TOSCA, a full-fledged support for orchestrating
multi-container applications is still lacking. Its development is in the scope of
our future work.

It is finally worth noting that, while Docker is the de-facto standard for
container-based virtualisation [18], the same does not hold for TOSCA [3] (which
was exploited here just as an example). There exists promising alternatives to
TOSCA that can be exploited, In the scope of our future work, we plan to
comparatively assess existing topology languages to determine the most suited
to our purposes, by also considering how Ansible or similar languages can be
extended to develop the aforementioned full-fledged support for orchestrating
multi-container applications.

References

1. Andrikopoulos, V.: Engineering cloud-based applications: Towards an application
lifecycle. In: Mann, Z.Á., Stolz, V. (eds.) Advances in Service-Oriented and Cloud
Computing. pp. 57–72. Springer (2018)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables de-
vops: Migration to a cloud-native architecture. IEEE Software 33(3), 42–52 (2016)

3. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M.,
Kappel, G., Leymann, F.: A systematic review of cloud modeling languages. ACM
Comput. Surv. 51(1), 22:1–22:38 (Feb 2018)

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications, pp. 527–549. Springer (2014)

26

getcloudify.org

12 A. Brogi et al.

5. Brogi, A., Canciani, A., Soldani, J.: Fault-aware management protocols for multi-
component applications. Journal of Systems and Software 139, 189 – 210 (2018)

6. Brogi, A., Di Tommaso, A., Soldani, J.: Sommelier: A tool for validating tosca
application topologies. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) Model-Driven
Engineering and Software Development. pp. 1–22. Springer (2018)

7. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, proba-
bly. In: 2017 IEEE Int. Conf. on Fog and Edge Computing (ICFEC). pp. 105–114.
IEEE (2017)

8. Brogi, A., Neri, D., Rinaldi, L., Soldani, J.: Orchestrating incomplete TOSCA
applications with Docker. Science of Computer Programming 166, 194–213 (2018)

9. Brogi, A., Neri, D., Soldani, J.: A microservice-based architecture for (customis-
able) analyses of docker images. Software: Practice and Experience 48(8), 1461–
1474 (2018)

10. Brogi, A., Rinaldi, L., Soldani, J.: TosKer: A synergy between TOSCA and Docker
for orchestrating multi-component applications. Software: Practice and Experience
(2018). https://doi.org/10.1002/spe.2625, [In press]

11. Brogi, A., Soldani, J.: Finding available services in TOSCA-compliant clouds. Sci-
ence of Computer Programming 115-116, 177–198 (2016)

12. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc. (2002)

13. Jamshidi, P., Pahl, C., Mendonca, N., Lewis, J., Tilkov, S.: Microservices: The
journey so far and challenges ahead. IEEE Software 35(3), 24–35 (2018)

14. Jamshidi, P., Pahl, C., Mendonca, N.: Pattern-based multi-cloud architecture mi-
gration. Software: Practice and Experience 47(9), 1159–1184 (2017)

15. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: NIST Cloud
Computing Reference Architecture: Recommendations of the National Institute of
Standards and Technology (Special Publication 500-292). NIST (2012)

16. OASIS: Topology and Orchestration Specification for Cloud Applications. http:
//docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf (2013)

17. Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Computing 2(3), 24–31
(2015)

18. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies:
a state-of-the-art review. IEEE Transactions on Cloud Computing (2017).
https://doi.org/10.1109/TCC.2017.2702586, [In press]

19. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: Proc. of FiCloud 2015, pp. 379–386. IEEE (2015)

20. Soldani, J., Binz, T., Breitenbcher, U., Leymann, F., Brogi, A.: ToscaMart: A
method for adapting and reusing cloud applications. Journal of Systems and Soft-
ware 113, 395 – 406 (2016)

21. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: A
systematic mapping study. In: Proc. of the 8th Int. Conf. on Cloud Computing
and Services Science, CLOSER 2018. pp. 221–232. SciTePress (2018)

22. Winn, D.: Cloud Foundry: The Cloud-Native Platform. O’Reilly Media, Inc. (2016)
23. Yangui, S., Mohamed, M., Tata, S., Moalla, S.: Scalable service containers. In:

Proc. of the 2011 IEEE Third Int. Conf. on Cloud Computing Technology and
Science (CloudCom 2011). pp. 348–356. IEEE Computer Society (2011)

24. Zimmermann, O.: Microservices tenets. Computer Science - Research and Devel-
opment 32(3), 301–310 (2017)

27

https://doi.org/10.1002/spe.2625
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
https://doi.org/10.1109/TCC.2017.2702586

Transactional Migration of Inhomogeneous
Composite Cloud Applications

Josef Spillner and Manuel Ramı́rez López

Zurich University of Applied Sciences, School of Engineering
Service Prototyping Lab (blog.zhaw.ch/icclab/), 8401 Winterthur, Switzerland

{josef.spillner,ramz}@zhaw.ch

Abstract. For various motives such as routing around scheduled down-
times or escaping price surges, operations engineers of cloud applications
are occasionally conducting zero-downtime live migrations. For mono-
lithic virtual machine-based applications, this process has been stud-
ied extensively. In contrast, for composite microservice applications new
challenges arise due to the need for a transactional migration of all
constituent microservice implementations such as platform-specific light-
weight containers and volumes. This paper outlines the challenges in the
general heterogeneous case and solves them partially for a specialised
inhomogeneous case based on the OpenShift and Kubernetes applica-
tion models. Specifically, the paper describes our contributions in terms
of tangible application models, tool designs, and migration evaluation.
From the results, we reason about possible solutions for the general het-
erogeneous case.

1 Introduction

Cloud applications are complex software applications which require a cloud en-
vironment to operate and to become programmable and configurable through
well-defined and uniform service interfaces. Typically, applications are deployed
in the form of virtual machines, containers or runtime-specific archives into envi-
ronments such as infrastructure or platform offered as a service (IaaS and PaaS,
respectively). Recently, container platforms (CaaS) which combine infrastructure
and higher-level platform elements such as on-demand volumes and scheduling
policies have become popular especially for composite microservice-based appli-
cations [1].

The concern of continuous deployment in these environments is then to keep
the applications up to date from the latest development activities [2]. Another
concern is to maintain flexibility in where the applications are deployed and how
quickly and easily they can be re-deployed into another environment. When a
new deployment from the development environment is not desired or simply not
possible due to the lack of prerequisites, a direct migration from a source to a
target environment may be a solution despite hurdles to full automation [3].

Cloud application migration from this viewpoint can be divided into different
categories: Homogeneous and heterogeneous migrations, referring to differences

28

2 Josef Spillner and Manuel Ramı́rez López

in the source and target environment technologies, same-provider and cross-
provider migrations, referring to the ability to migrate beyond the boundaries of
a single hosting services provider, as well as offline and online/live migrations,
referring to the continuity of application service provisioning while the migration
goes on. On the spectrum between homogeneity and heterogeneity, inhomoge-
neous migrations are concerned with minor automatable differences. This paper
is concerned with live, heterogeneous/inhomogeneous, cross-provider migrations
as shown in Fig. 1.

Fig. 1. Positioning within the multi-dimensional categories of cloud application migra-
tions

An additional distinction is the representation of applications. Most of the lit-
erature covers monolithic applications which run as instances of virtual machine
images where the main concern is pre-copy/post-copy main memory synchro-
nisation [4]. Few emerging approaches exist for more lightweight compositions
of stateless containers, where main memory is no longer a concern, and further
platform-level components such as database services, volumes, secrets, routes
and templates, some of which keep the actual state [5]. This paper is therefore
concerned with migrating applications based on container compositions between
diverse cloud platforms.

Consequently, the main contribution of the paper is a discussion of migra-
tion tool designs and prototypes for containerised Docker Compose, OpenShift
and Kubernetes applications across providers. OpenShift is one of the most
advanced open source PaaS stacks based on Kubernetes, a management and
scheduling platform for containers, and in production use at several commer-
cial cloud providers including RedHat’s OpenShift Online, the APPUiO Swiss
Container Platform, and numerous on-premise deployments [6]. Additional pure
Kubernetes hosting is offered by the Google Cloud Platform, by Azure Con-
tainer Services and by the overlay platform Tectonic for AWS and Azure, among
other providers [7]. Both platforms orchestrate, place, schedule and scale ideally-

29

Transactional Migration of Inhomogeneous Composite Cloud Applications 3

stateless Docker containers, while simpler compositions can also be achieved with
Docker Compose.

The possibility to have the same containerised application deployed and run-
ning in different cloud providers and using different container platforms or or-
chestration tools is useful for both researcher and for companies. It facilitates
the comparison of different cloud providers or different orchestration tools. For
companies, it facilitates to run the applications in the most attractive hosting
options by cost or other internal constraints. Key questions to which the use
of our tools gives answers typically are: Is the migration feasible? Is it lossless?
How fast is it? Does the order matter?

The paper is structured as follows. First, we analyse contemporary applica-
tion compositions to derive requirements for the generalised live heterogeneous
migration process (Sect. 2), followed by outlining the tool design principles (Sect.
3) and architecture (Sect. 4) for a simpler subset, inhomogeneous migration. The
implemented tools are furthermore described (Sect. 5) and evaluated with real
application examples (Sect. 6). The paper concludes with a summary of achieve-
ments (Sect. 7) and a discussion on filling the gap to truly heterogeneous live
migration.

2 Analysis

In the definition given in a ten-year review of cloud-native applications [8], such
applications are designed using self-contained deployment units. In currents ap-
plications the consensus is to use containers for reasonable isolation and almost
native performance. Among the container technologies, Docker containers are
the most common technology, although there are alternatives including Rkt,
Containerd or CRI-O, as well as research-inspired prototypical engines such as
SCONE [9]. In the following, we define a well-designed cloud application as a
blueprint-described application, using containers to encapsulate the logic in mi-
croservices bound to the data confined in volumes. For deploying these applica-
tions in production into the cloud, just the container technology is not enough.
Generally, a proper containerised application also uses an advanced container
platform or an orchestration solution to add self-healing, auto-scaling, load bal-
ancing, service discovery and other properties which make it easier and faster to
develop and deploy applications in the cloud. The platform also leverages more
resilience, higher availability and scalability in the application itself. Among
the most popular tools and platforms used to orchestrate containers are Docker
Swarm, Docker Compose, Kubernetes, OpenShift, Rancher, and similar plat-
forms. All of these can run in different cloud providers or on-premise. Moreover,
usually each cloud provider has their own container platform. In Fig. 2 a dia-
gram about the main container platforms and container orchestrators with their
different associated composition blueprints is shown. The diagram also reveals
relations and classifies the approaches by licencing (open source or proprietary)
and by fitness for production. This complex technological landscape leads to dif-
ferent blueprints for the same containerised application depending which causes

30

4 Josef Spillner and Manuel Ramı́rez López

practical difficulties for migrations. Despite fast ongoing consolidation, including
the announced discontinuation of Docker Cloud in 2018, minor variations such as
installed Kubernetes extensions continue to be a hurdle for seamless migration.

Fig. 2. Map of major container platforms and orchestration tools

The planning of the migration of a containerised application thus encom-
passes two key points which restrain the ability to automate the process:

– The blueprints: Even though containers encapsulate all the code in images
which are meant to be portable and run everywhere, most of the real ap-
plications will need an orchestration tool to exploit all advantages that the
cloud environment introduces: service discovery, definition of the number of
replicas or persistence configuration. As most orchestration tools will intro-
duce specific blueprints or deployment descriptors, the migration tool will
need to convert between blueprint formats through transformation, perform
minor modifications such as additions and removals of expressions, or rewrite
limits and group associations (requirement R1).

– The data: Migration of the persisted data and other state information is
non-trivial. In most container engines, the persistence of the data is confined
to volumes. Depending of the cloud provider, the blueprints processed by the
orchestration tools could reference volumes differently even for homogeneous
orchestration tools, leading to slight differences and thus inhomogeneity (re-
quirement R2).

To address these two points and increase the automation, the design of a
suitable migration tool needs to account specifically for blueprint conversion
and properly inlined data migration. We formalise a simplified composite appli-
cation deployment as D = {b, c, v, . . . }, respectively, where: b: blueprint; c: set
of associated containers; v: set of associated volumes. For example, a simplified
OpenShift application is represented as Dopenshift = {b, c, v, t, is, r, . . . }, where:

31

Transactional Migration of Inhomogeneous Composite Cloud Applications 5

t: set of templates; is: set of image streams; r: set of routes. The goal of ideal
heterogeneous migration m is to find migration paths from any arbitrary source
deployment to any target deployment: m = D → D′.

Fig. 3 summarises the different realistically resulting inhomogeneous migra-
tion paths between the three possible configurations Dkubernetes, Dopenshift and
Dcompose. Through various modifications applied to the orchestration descrip-
tors, sources and targets can be largely different while mostly avoiding a loss of
deployment information in fulfilment of R1.

Fig. 3. Inhomogeneous application migration paths between three systems

3 General Application Migration Workflows

Requirement R1 calls for a dedicated blueprint extraction, conversion and re-
deployment process. We consider four steps in this process (see Fig. 4) which
shall be implemented by a migration tool:

– Step 1. Downloading the blueprints of the composite application: The tool
will connect to the source platform the application is running on, will identify
all the components of the application and download the blueprints to a
temporary location.

– Step 2. Converting the blueprints: A conversion from source to target format
takes place. Even when homogeneous technologies are in place on both sides,
re-sizing and re-grouping of components can be enforced according to the
constraints on the target side (fulfilling R1).

– Step 3. Deploying the application: The tool will connect to the new orches-
tration platform and deploy the application there.

– Step 4. Deleting the application: Once the new application instance is run-
ning in the new place, the tool can delete the old application instance from
the previous place. This step is optional and only executed under move se-
mantics as opposed to copy semantics.

A major issue is the transactional guarantee of achieving a complex running
and serving application on the target platform which in all regards equals the
source. To make this process successful in all cases, the tool algorithm must
further fulfil the following three requirements:

32

6 Josef Spillner and Manuel Ramı́rez López

Blueprints of
orchestration tool A

Blueprints of
orchestration tool BOrchestration tool B

Step 1:
Download

files

Step 2:
ConversionStep 3:

Deploy the
APP

Orchestration tool A

Fig. 4. Blueprints process diagram

– Connect to each of the different platforms in scope for heterogeneous migra-
tion.

– Convert between all the blueprints.
– Download and upload the application components from/to all the platforms,

ensuring a re-deployment in the right order and a smooth hand-over by
name service records which are typically external to both source and target
platform.

With the previously described workflow, the tool can migrate stateless ap-
plication or the stateless components of a stateful application. To complete the
migration, the data in the containers needs to be migrated as well according
to R2. In practice, this refers to volumes attached to containers, but also to
databases and message queues which must be persisted in volume format be-
forehand. The process of the migration of a volume will be as follows:

– Step 1. Find the list of volumes linked to an application and for each one
the path to the data.

– Step 2. Download the data to a temporary location. Due to the size, differ-
ential file transfer will be used.

– Step 3. Identify the same volume in the new deployment and pre-allocate
the required storage space.

– Step 4. Upload the data to the new volume.

Now, we devise a fictive tool to express how the combined fulfilment of R1
and R2 in the context of heterogeneous application migration can be realised,
expressed by Fig. 5 which highlights the separation into blueprints and data.

Although practicioners and researchers would benefit greatly from such a
generic and all-encompassing tool, its conception and engineering would take
many person months of software development work, needlessly delaying a proto-
type to answer the previously identified questions many companies in the field
have right now. Instead, to focus on key research questions as outlined in the
introduction follows a divide-and-conquer strategy. We subdivide the overall fic-
tive tool into a set of smaller tools logically grouped into three categories, as
shown in Fig. 6. Thus, we put our own prototypical work into context of a wider

33

Transactional Migration of Inhomogeneous Composite Cloud Applications 7

Docker
Swarm

Vamp

Docker
Compose

docker-compose

Marathon

Kubernetes

OpenShift

others...

/templates/
 /k8s/

 /marathon
/vamp

 /compose
/other

/volumes

Generic Migration

Fig. 5. Stateful application components diagram

ecosystem with some existing tools and further ongoing and future developments,
making it possible to evaluate migration scenarios already now. The tools are:

– Homogeneously migrating containerised applications between multiple in-
stances of the same orchestration tool: os2os (our work).

– Converting blueprints between the formats required by the platforms related
to R1: Kompose (existing work).

– Rewriting Kubernetes blueprints to accomodate quotas: descriptorrewriter
(our work).

– Migrating volumes related to R2: volume2volume (our work).
– Homogeneous transactional integration of volume and data migration for

OpenShift as a service: openshifter (our early stage work).

Fictive Generic
Heterogeneous
Migration Tool

OpenShift:
os2os

Kubernetes:
"k8s2k8s"

Docker Swarm:
"swarm2swarm" others...

Kompose

"Cubernetes"

volume2volume

oc kubectl docker others CLI

Homogeneous migration

Blueprint
conversion

Data
migration

OpenShift:
openshifter

descriptor
rewriter

Fig. 6. Implementation strategy for fictive heterogeneous migration tool

We contribute in this paper the architectural design, implementation and
combined evaluation of four tools referring to inhomogeneous OpenShift/Kuber-
netes/Docker Compose-to-OpenShift/Kubernetes migration. Use cases encom-
pass intra-region replication and region switching within one provider, migration

34

8 Josef Spillner and Manuel Ramı́rez López

from one provider to another, and developer-centric migration of local test ap-
plications into a cloud environment. All tools are publicly available for download
and experimentation1.

4 Migration Tools Design and Architecture

The general design of all tool ensures user-friendly abstraction over existing low-
level tools such as oc and kubectl, the command line interfaces to OpenShift
and Kubernetes, as well as auxiliary tools such as rsync for differential data
transfer. Common migration and copy/replication workflows are available as
powerful single commands. In Openshifter, these are complemented with full
transaction support so that partial migrations can be gracefully interrupted or
rolled back in case of ocurring issues.

As Fig. 7 shows on the left side, os2os uses oc to communicate with the
source and target OpenShift clusters and temporarily stores all artefacts in local
templates and volumes folders. This choice ensures that only a single provider
configuration file needs to be maintained and that any features added to oc

will be transparently available. On the right side of Fig. 7, the Openshifter
tool is depicted which follows a service-oriented design. This choice ensures that
the migration code itself runs as stateless, resilient and auto-scaled service. A
further difference between the tools is that for Openshifter, we have explored
a conceptual extension of packaged template and configuration data archives,
called Helm charts, into fat charts which include a snapshot of the data, closing
the gap to monolithic virtual machines.

OpenShift source cluster
OpenShift target cluster

os2os/templates
/volumes

oc

My project/namespace

My application

blueprint volume volume

volume2volume

rsync

Migration space

openshifter

oc rsync

openshifterclient

/templates
/volumes
/charts

Fig. 7. OS2OS/Volume2Volume architectures (left); Openshifter architecture (right)

Exemplarily for all tools, os2os is composed of the following commands:

1 Tools website: https://github.com/serviceprototypinglab/

35

Transactional Migration of Inhomogeneous Composite Cloud Applications 9

– export: Connect to one cluster and export all the components (objects) of
one application in one project, saved locally in a folder called templates.

– up: Connect to one cluster and upload all the components of one application
in one project which are saved in templates.

– down: Connect to one cluster and delete all the components of one applica-
tion in one project.

– migrate: Combine all the commands chronologically for a full migration in
a single workflow.

The tools are implemented in different ways following the different designs.
Both os2os and volume2volume are inspired by Kompose. They are imple-
mented as command-line tools using Go with Cobra as library for handling the
command-line parameters. Furthermore, the command names are derived from
Kompose, making it easy to learn the tool for existing Kompose users. As usual
in applications using Cobra, the configuration of the tool is stored in a YAML
file. It contains the credentials to connect to the clusters, the cluster endpoints,
the projects and the object types to migrate, overriding the default value of all
object types. The openshifter prototype is implemented in Python using the
AIO-HTTP web library to expose RESTful methods and works without any
configuration file by receiving all parameters at invocation time.

5 Evaluation

When evaluating cloud migration tools, three important questions arise on whether
the migration is lossless, performing and developer-acceptable. The measurable
evaluation criteria are:

– C1 / Losslessness: The migration needs to avoid loss of critical application
deployment information even after several roundtrips of migration between
inhomogeneous systems. This is a challenge especially in the absence of fea-
tures on some platforms. For instance, Kubernetes offers auto-scaling while
Docker Swarm does not, leading to the question of how to preserve the in-
formation in case a migration from Kubernetes to Docker Swarm is followed
by a reverse migration while the original source platform has vanished.

– C2 / Performance: A quantitative metric to express which time is needed
both overall and for the individual migration steps. Further, can this time
be pre-calculated or predicted in order to generate automated downtime
messages, or can any downtime be alleviated.

– C3 / Acceptance: The migration needs to be easy to use for developers and
operators as well as in modern DevOps environments.

A testbed with two local virtual machines running OpenShift 3.6 (setup S1)
as well as a hosted OpenShift environment provided by the Swiss container plat-
form APPUiO (S2) were set up to evaluate our tools experimentally according
to the defined criteria C1 and C2. A synthetic scenario application consisting
of three deployments and three services was prepared for that matter (A1), and
the existing Snafu application (A2) was used for the comparison. The evaluation
of C3 is left for future work.

36

10 Josef Spillner and Manuel Ramı́rez López

5.1 Evaluation of Losslessness

For Kubernetes and OpenShift, the scenario service consists of shared Service
and ConfigMap objects as well as platform-specific ones which are subject to loss;
for Docker Compose, it consists of roughly equivalent directives. The deployed
service was migrated from source to target and, with swapped roles between the
platforms, back again from target to source. The following table reports on the
loss of information depending on the system type. The Kompose tool incorrectly
omits the lowercasing of object names and furthermore does not automatically
complete the generated descriptors with information not already present in the
Docker Compose files. To address the first issue, we have contributed a patch,
whereas the second one would require a more extensive tool modification. The
upgrade from Kubernetes to OpenShift works although OpenShift merely sup-
ports Deployment objects as a convenience whereas DeploymentConfig objects
would be needed.

Table 1: Losslessness of blueprint transformations

Source Target Loss
OpenShift OpenShift none (assuming equal quotas)
OpenShift Kubernetes (manual) ImageStream,Route,

DeploymentConfig
Kubernetes OpenShift (manual) (Deployment)
Docker Compose Kubernetes (w/ Kompose) none (yet incomplete & incorrect)

As a result, we have been able to automate all migrations except for the down-
grade from OpenShift to Kubernetes using a combination of our tools which is
invoked transparently when using Openshifter. The losslessness further refers to
in-flight import and export of volume data. To avoid data corruption, applica-
tions need to perform modifications on the file level atomically, for instance by
placing uploads into temporary files which are subsequently atomically renamed.
Support for applications not adhering to this requirement is outside the scope
of our work.

5.2 Evaluation of Performance

The synthetic scenario service A1 was exported from the source, re-deployed
at the target, and torn down at the source 10 times with os2os in order to
get information about the performance and its deviation in the local-to-local
migration setup S1. Fig. 8 shows the results of the performance experiments. An
evident characteristic is that exporting objects without changing them is more
stable than running the down/up commands which modify the objects and cause
changes to the scheduling of the remaining objects. A second observation is that,
counter-intuively, the down command consumes most of the time. A plausible
explanation is that instead of simple deletions, objects are rather scheduled for
deletion into a queue.

37

Transactional Migration of Inhomogeneous Composite Cloud Applications 11

0 2 4 6 8
run ref.export.json

0

5

10

15

20

25

tim
e

(s
)

0 2 4 6 8
run ref.up.json

0

5

10

15

20

25

tim
e

(s
)

0 2 4 6 8
run ref.down.json

0

5

10

15

20

25

tim
e

(s
)

Fig. 8. Durations of the individual migration phases – export (left figure), up (middle),
down (right) – between two local Kubernetes clusters

Service A2 was transformed automatically to measure the influence of the
transformation logic on planned live migrations. The creation of Kubernetes de-
scriptors with Kompose takes approximately 0.028 s. The adjustment of quotas
and consolidation of pods, as performed by descriptorrewriter, takes approx-
imately 0.064 s on the resulting Kubernetes descriptors. Both transformations
are thus negligible which implies that apart from blueprint exports, the data
transfer, which is primarily limited by the cluster connectivity, is the dominant
influence on overall performance.

6 Conclusion

We have conducted a first analytical study on migrating cloud-native applica-
tions between inhomogeneous development and production platforms. The anal-
ysis was made possible through prototypical migration tools whose further devel-
opment is in turn made possible by the results of the experiments. The derived
findings from the experimental evaluation suggest that application portability
is still an issue beyond the implementation (container) images. Future cloud
platforms should include portability into the design requirements.

7 Future work

The current prototypes only support Kubernetes-based platforms. All function-
ality to convert other formats has been integrated into the experiments with
external and existing tools. In the future, we want to integrate them in a unified
way into openshifter. Further, we want to work on stricter requirements con-
cerning a production-ready migration. They encompass improved user interfaces
for easier inter-region/-zone migration within one provider, automatic identifi-
cation of associated state and data formats, plugins for databases and message
queues which keep non-volume state, data checksumming, and pre-copy statis-
tics about both expected timing and resource requirements of the process and
the subsequent deployment.

38

12 Josef Spillner and Manuel Ramı́rez López

Acknowledgements

This research has been funded by Innosuisse - Swiss Innovation Agency in project
MOSAIC/19333.1.

References

1. S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya. Efficient Virtual
Machine Sizing for Hosting Containers as a Service (SERVICES 2015). In 2015
IEEE World Congress on Services, pages 31–38, June 2015.

2. Pilar Rodŕıguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Teppola,
Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja, June M. Verner,
and Markku Oivo. Continuous deployment of software intensive products and ser-
vices: A systematic mapping study. Journal of Systems and Software, 123:263–291,
2017.

3. Massimo Ficco, Christian Esposito, Henry Chang, and Kim-Kwang Raymond Choo.
Live Migration in Emerging Cloud Paradigms. IEEE Cloud Computing, 3(2):12–19,
2016.

4. Petronio Bezerra, Gustavo Martins, Reinaldo Gomes, Fellype Cavalcante, and An-
derson F. B. F. da Costa. Evaluating live virtual machine migration overhead on
client’s application perspective. In 2017 International Conference on Information
Networking, ICOIN 2017, Da Nang, Vietnam, January 11-13, 2017, pages 503–508,
2017.

5. Jaemyoun Lee and Kyungtae Kang. Poster: A Lightweight Live Migration Plat-
form with Container-based Virtualization for System Resilience. In Proceedings of
the 15th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys’17, Niagara Falls, NY, USA, June 19-23, 2017, page 158, 2017.

6. C. Pahl. Containerization and the PaaS Cloud. IEEE Cloud Computing, 2(3):24–31,
May 2015.

7. Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
Borg, Omega, and Kubernetes. Commun. ACM, 59(5):50–57, 2016.

8. Nane Kratzke and Peter-Christian Quint. Understanding cloud-native applications
after 10 years of cloud computing - A systematic mapping study. Journal of Systems
and Software, 126:1–16, 2017.

9. Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Still-
well, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and
Christof Fetzer. SCONE: Secure Linux Containers with Intel SGX. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, November 2-4, 2016., pages 689–703, 2016.

39

Secure Apps in the Fog: Anything to Declare?

Antonio Brogi, Gian-Luigi Ferrari, and Stefano Forti

Department of Computer Science,
University of Pisa, Italy

name.surname@di.unipi.it

Abstract. Assessing security of application deployments in the Fog is
a non-trivial task, having to deal with highly heterogeneous infrastruc-
tures containing many resource-constrained devices. In this paper, we
introduce: (i) a declarative way of specifying security capabilities of Fog
infrastructures and security requirements of Fog applications, and (ii) a
(probabilistic) reasoning strategy to determine application deployments
and to quantitatively assess their security level, considering the trust de-
gree of application operators in different Cloud/Fog providers. A lifelike
example is used to showcase a first proof-of-concept implementation and
to illustrate how it can be used in synergy with other predictive tools to
optimise the deployment of Fog applications.

Keywords: Fog computing · Application Deployment · Security As-
sessment · Executable Specifications · Probabilistic Logic Programming
· Trust.

1 Introduction

Fog computing [9] aims at better supporting the growing processing demand of
(time-sensitive and bandwidth hungry) Internet of Things (IoT) applications by
selectively pushing computation closer to where data is produced and exploiting
a geographically distributed multitude of heterogeneous devices (e.g., personal
devices, gateways, micro-data centres, embedded servers) spanning the contin-
uum from the Cloud to the IoT. As a complement and an extension of the Cloud,
the Fog will naturally share with it many security threats and it will also add
its peculiar ones. On the one hand, Fog computing will increase the number of
security enforcement points by allowing local processing of private data closer
to the IoT sources. On the other hand, the Fog will be exposed to brand new
threats for what concerns the trust and the physical vulnerability of devices. In
particular, Fog deployments will span various service providers - some of which
may be not fully trustable - and will include accessible devices that can be easily
hacked, stolen or broken by malicious users [25]. Security will, therefore, play
a crucial role in the success of the Fog paradigm and it represents a concern
that should be addressed by-design at all architectural levels [26, 37]. The Fog
calls for novel technologies, methodologies and models to guarantee adequate
security (privacy and trust) levels to Fog deployments even when relying upon
resource-constrained devices [8].

40

2 A. Brogi et al.

Meanwhile, modern computing systems are more and more made from dis-
tributed components – such as in service-oriented and micro-service based archi-
tectures – what makes it challenging to determine how they can be best-placed
so to fulfil various application requirements. In our previous work, we proposed
a model and algorithms to determine eligible deployments of IoT applications
to Fog infrastructures [4] based on hardware, software and QoS requirements.
Our prototype – FogTorchΠ – implements those algorithms and permits to esti-
mate the QoS-assurance, the resource consumption in the Fog layer [5] and the
monthly deployment cost [6] of the output eligible deployments. Various other
works tackled the problem of determining “optimal” placements of application
components in Fog scenarios, however, none included a quantitative security as-
sessment to holistically predict security guarantees of the deployed applications,
whilst determining eligible application deployments. Therefore, there is a clear
need to evaluate a priori whether an application will have its security require-
ments fulfilled by the (Cloud and Fog) nodes chosen for the deployment of its
components. Furthermore, due to the mission-critical nature of many Fog ap-
plications (e.g., e-health, disaster recovery), it is important that the techniques
employed to reason on security properties of deployed multi-component applica-
tions are configurable and well-founded.

In this paper, we propose a methodology (SecFog) to (quantitatively) assess
the security level of multi-component application deployments in Fog scenarios.
Such quantitative assessment can be used both alone – to maximise the security
level of application deployments – and synergically with other techniques so
to perform multi-criteria optimisations and to determine the best placement
of application components in Fog infrastructure. This work allows application
deployers to specify security constraints both at the level of the components
and at the level of the application as a whole. As per recent proposals in the
field of AI [3], it exploits probabilistic reasoning to account for reliability and
trust, whilst capturing the uncertainty typical of in Fog scenarios. Therefore,
we propose: (i) a declarative methodology that enables writing an executable
specification of the security policies related to an application deployment to be
checked against the security offerings of a Fog infrastructure, (ii) a reasoning
methodology that can be used to look for secure application deployments and
to assess the security levels guaranteed by any input deployment, and (iii) a
first proof-of-concept implementation of SecFog which can be used to optimise
security aspects of Fog application deployments along with other metrics.

The rest of this paper is organised as follows. After reviewing some related
work (Section 2), we offer an overview of SecFog and we introduce a motivating
example (Section 3). Then, we present our proof-of-concept implementation of
SecFog and we show how it can be used to determine application deployment
whilst maximising their security level (Section 4). Finally, we show how SecFog

can be used with FogTorchΠ to identify suitable trade-offs among QoS-assurance,
resource usage, monthly cost and security level of eligible deployments (Section
2), and we briefly conclude with some directions for future work (Section 6).

41

Secure Apps in the Fog: Anything to Declare? 3

2 Related Work

Among the works that studied the placement of multi-component applications to
Cloud nodes, very few approaches considered security aspects when determining
eligible application deployments, mainly focussing on improving performance,
resource usage and deployment cost [18, 21], or on performing identification of
potential data integrity violations based on pre-defined risk patterns [28]. Indeed,
existing research considered security mainly when treating the deployment of
business processes to (federated) multi-Clouds (e.g., [23, 12, 36]). Similar to our
work, Luna et al. [19] were among the first to propose a quantitative reasoning
methodology to rank single Cloud providers based on their security SLAs, and
with respect to a specific set of (user-weighted) security requirements. Recently,
swarm intelligence techniques [21] have been exploited to determine eligible de-
ployments of composite Cloud applications, considering a risk assessment score
based on node vulnerabilities.
Fog computing introduces new challenges, mainly due to its pervasive geo-
distribution and heterogeneity, need for QoS-awareness, dynamicity and support
to interactions with the IoT, that were not thoroughly studied in previous works
addressing the problem of application deployment to the Cloud [32, 35]. Among
the first proposals investigating these new lines, [15] proposed a Fog-to-Cloud
search algorithm as a first way to determine an eligible deployment of (multi-
component) DAG applications to tree-like Fog infrastructures. Their placement
algorithm attempts the placement of components Fog-to-Cloud by considering
hardware capacity only. An open-source simulator – iFogSim – has been released
to test the proposed policy against Cloud-only deployments. Building on top of
iFogSim, [20] refines tries to guarantee the application service delivery deadlines
and to optimise Fog resource exploitation. Also [33] used iFogSim to implement
an algorithm for optimal online placement of application components, with re-
spect to load balancing. Recently, exploiting iFogSim, [13] proposed a distributed
search strategy to find the best service placement in the Fog, which minimises
the distance between the clients and the most requested services, based on re-
quest rates and available free resources. [17, 30] proposed (linearithmic) heuristic
algorithms that attempt deployments prioritising placement of applications to
devices that feature with less free resources.

From an alternative viewpoint, [16] gave a Mixed-Integer Non-Linear Pro-
gramming (MINLP) formulation of the problem of placing application compo-
nents so to satisfy end-to-end delay constraints. The problem is then solved by
linearisation into a Mixed-Integer Linear Programming (MILP), showing po-
tential improvements in latency, energy consumption and costs for routing and
storage that the Fog might bring. Also [29] adopted an ILP formulation of the
problem of allocating computation to Fog nodes so to optimise time deadlines on
application execution. A simple linear model for the Cloud costs is also taken into
account. Finally, dynamic programming (e.g., [27]), genetic algorithms (e.g., [29])
and deep learning (e.g., [31]) were exploited promisingly in some recent works.

Overall, to the best of our knowledge, no previous work included a quantita-
tive assessment of the security level of candidate Fog application deployments.

42

4 A. Brogi et al.

3 Methodology Overview

The OpenFog Consortium [1] highlighted the need for Fog computing platforms
to guarantee privacy, anonymity, integrity, trust, attestation, verification and
measurement. Whilst security control frameworks exist for Cloud computing sce-
narios (e.g., the EU Cloud SLA Standardisation Guidelines [2] or the ISO/IEC
19086), to the best of our knowledge, no standard exists yet that defines security
objectives for Fog application deployments. Based on recent surveys about secu-
rity aspects in Fog computing (i.e., [21], [22], [25]), we devised a simple example
of taxonomy1 (Figure 1) of security features that can be offered by Cloud and
Fog nodes and therefore used for reasoning on the security levels of given Fog
application deployments.

FOG SECURITY

Virtualisation Communications Data Physical Other

Access Logs

Authentication

Host IDS

Process Isolation

Permission
Model

Resource Usage
Monitoring

Restore Points

User Data Isola-
tion

Certificates

Firewall

IoT Data En-
cryption

Node Isolation
Mechanims

Network IDS

Public Key
Cryptography

Wireless Secu-
rity

Backup

Encrypted Stor-
age

Obfuscated
Storage

Access Control

Anti-tampering
Capabilities

Audit

Fig. 1. An example of taxonomy of security capabilities in Fog computing.

Security features that are common with the Cloud might assume renewed
importance in Fog scenarios, due to the limited capabilities of the available
devices. For instance, guaranteeing physical integrity of and user data isolation
at an access point with Fog capabilities might be very difficult. Apropos, the
possibility to encrypt or obfuscate data at Fog nodes, along with encrypted IoT
communication and physical anti-tampering machinery, will be key to protect
those application deployments that need data privacy assurance.

Figure 2 shows the ingredients needed to perform the security assessment by
means of the SecFog methodology. On the one hand, we assume that infrastruc-

1 The proposed taxonomy can be easily modified, extended and refined so as to include
new security categories and third-level security features as soon as normative security
frameworks will get established for the Fog.

43

Secure Apps in the Fog: Anything to Declare? 5

Fig. 2. Bird’s-eye view of SecFog.

ture operators declare the security capabilities featured by their nodes2. Namely,
for each node she is managing, the operator publishes a Node Descriptor (ND) fea-
turing a list of the node security capabilities along with a declared measure of
their reliability (in the range [0, 1]), as shown in Figure 4. On the other hand,
based on the same common vocabulary, application operators can define (non-
trivial) custom security policies. Such properties can complete or override a set
of default security policies available in SecFog implementation. Custom security
policies can be either existing ones, inferred from the presence of certain node
capabilities, or they can be autonomously specified/enriched by the application
deployers, depending on business-related considerations.

For instance, one can derive that application components deployed to nodes
featuring Public Key Cryptography capabilities can communicate through End-to-

End Secure channel. A different stakeholder might also require the availability of
Certificates at both end-point to consider a channel End-to-End Secure. Similarly,
one can decide to infer that a node offering Backup capabilities together with
Encrypted Storage or Obfuscated Storage can be considered a Secure Storage provider.
Custom and default properties are used, along with ground facts, to specify
the security requirements of a given application as Component Requirements (CR)
and Application Requirements (AR), or both. For instance, application operators
can specify that a certain component c is securely deployed to node n when n
features Secure Storage and when the communication with component c′ happens
over an End-to-End Secure channel.

Finally, the security level of an application deployment can be assessed by
matching the security requirements of the application with the security capa-
bilities featured by the infrastructure and by multiplying the reliability of all
exploited security capabilities, weighting them as per trust degrees, which may

2 For the sake of simplicity, in this paper, we assume that operators exploit the vo-
cabulary of the example taxonomy in Figure 1. In reality, different operators can
employ different vocabulary and then rely on mediation mechanisms.

44

6 A. Brogi et al.

be assigned by application deployers to each infrastructure operator. This last
step can be used both to assess the security level of a single (possibly partial)
input application deployment and to generate and test all eligible deployments
according to the declared security requirements. We now go through a motivating
example that we will retake later on by exploiting the SecFog prototype.

3.1 Motivating Example

We retake the application example of [6]. Consider a simple Fog application
(Figure 3) that manages fire alarm, heating and A/C systems, interior light-
ing, and security cameras of a smart building. The application consists of three
microservices:

– IoTController, interacting with the connected cyber-physical systems,
– DataStorage, storing all sensed information for future use and employing ma-

chine learning techniques to update sense-act rules at the IoTController so
to optimise heating and lighting management based on previous experience
and/or on people behaviour, and

– Dashboard, aggregating and visualising collected data and videos, as well as
allowing users to interact with the system.

Fig. 3. Fog application.

Each microservice represents an independently deployable component of the ap-
plication [24] and has hardware and software requirements3 in order to function
properly. Application components must cooperate so that well-defined levels of
service are met at runtime. Hence, communication links supporting component-
component and component-thing interactions should provide suitable end-to-end
latency and bandwidth.
Figure 4 shows the infrastructure – two Cloud data centres, three Fog nodes –
to which the smart building application is deployed. For each node, the avail-
able security capabilities and their reliability (as declared by the infrastructure
operator) are listed in terms of the taxonomy of Figure 1.

3 For the sake of readability, we omit the application requirements. The interested
reader can find all the details in [6].

45

Secure Apps in the Fog: Anything to Declare? 7

Fig. 4. Fog infrastructure: security view.

Table 1 lists all the deployments of the given application to the considered infras-
tructure which meet all set software, hardware and network QoS requirements, as
they are found by FogTorchΠ in [6]. For each deployment, FogTorchΠ outputs the
QoS-assurance (i.e., the likelihood it will meet network QoS requirements), an
aggregate measure of Fog resource consumption, and an estimate of the monthly
cost for keeping the deployment up and running. Deployments annotated with
∗ are only available when Fog 2 features a 4G connection which costs, however,
20 e a month in addition to the costs reported in Table 1.

In [6], the deployments ∆2 and ∆16 are selected as the best candidates
depending on the type of mobile connection (i.e., 3G vs 4G) available at Fog 2.
As the majority of the existing approaches for application placement, [6] focuses
on finding deployments that guarantee application functionality and end-user
preferences, currently ignoring security aspects in the featured analysis.

Nevertheless, the application operators are able to define the following Component

Requirements:

– IoTController requires Physical Security guarantees (i.e., Access Control ∨ Anti-

tampering Capabilities) so to avoid that temporarily stored data can be physi-
cally stolen from the deployment node,

– DataStorage requires Secure Storage (viz., Backup ∧ (Obfuscated Storage ∨ En-

crypted Storage)), the availability of Access Logs, a Network IDS in place to
prevent distributed Denial of Service (dDoS) attacks, and

– Dashboard requires a Host IDS installed at the deployment node (e.g., an an-
tivirus software) along with a Resource Usage Monitoring to prevent interactions
with malicious software and to detect anomalous component behaviour.

46

8 A. Brogi et al.

Table 1. Eligible deployments of the example application.

Dep. ID IoTController DataStorage Dashboard QoS Resources Cost

∆1 Fog 2 Fog 3 Cloud 2 98.6% 48.4% e 856.7

∆2 Fog 2 Fog 3 Cloud 1 98.6% 48.4% e 798.7

∆3 Fog 3 Fog 3 Cloud 1 100% 48.4% e 829.7

∆4 Fog 2 Fog 3 Fog 1 100% 59.2% e 844.7

∆5 Fog 1 Fog 3 Cloud 1 96% 48.4% e 837.7

∆6 Fog 3 Fog 3 Cloud 2 100% 48.4% e 887.7

∆7 Fog 3 Fog 3 Fog 2 100% 59.2% e 801.7

∆8 Fog 3 Fog 3 Fog 1 100% 59.2% e 875.7

∆9 Fog 1 Fog 3 Cloud 2 96% 48.4% e 895.7

∆10 Fog 1 Fog 3 Fog 2 100% 59.2% e 809.7

∆11 Fog 1 Fog 3 Fog 1 100% 59.2% e 883.7

∆12∗ Fog 2 Cloud 2 Fog 1 94.7% 16.1% e 870.7

∆13∗ Fog 2 Cloud 2 Cloud 1 97.2% 5.4% e 824.7

∆14∗ Fog 2 Cloud 2 Cloud 2 98.6% 5.4% e 882.7

∆15∗ Fog 2 Cloud 1 Cloud 2 97.2% 5.4% e 785.7

∆16∗ Fog 2 Cloud 1 Cloud 1 98.6% 5.4% e 727.7

∆17∗ Fog 2 Cloud 1 Fog 1 94.7% 16.1% e 773.7

Furthermore, the Application Requirements require guaranteed end-to-end encryp-
tion among all components (viz., all deployment nodes should feature Public

Key Cryptography) and that deployment nodes should feature an Authentication

mechanism. Finally, application operators assign a trust degree of 80% to the
infrastructure providers of Cloud 1 and Cloud 2, and of 90% to the infrastructure
providers of Fog 3 and Fog 2. Naturally, they consider their management of Fog

1 completely trustable.

4 Proof-of-Concept

Being SecFog a declarative methodology based on probabilistic reasoning about
declared infrastructure capabilities and security requirements, it was natural
to prototype it relying on probabilistic logic programming. To implement both
the model and the matching strategy we used a language called ProbLog [10].
ProbLog is a Python package that permits writing logic programs that encode
complex interactions between large sets of heterogeneous components, captur-
ing the inherent uncertainties that are present in real-life situations. Problog
programs are composed of facts and rules. The facts, such as

p::f.

represent a statement f which is true with probability p4. The rules, like

r :- c1, ... , cn.

4 A fact declared simply as f. is assumed to be true with probability 1.

47

Secure Apps in the Fog: Anything to Declare? 9

represent a property r inferred when c1 ∧ · · · ∧ cn hold5. ProbLog programs are
logic programs in which some of the facts are annotated with (their) probabilities.
Each program defines a probability distribution over logic programs where a
fact p::f. is considered true with probability p and false with probability 1− p.
The ProbLog engine [11] determines the success probability of a query q as the
probability that q has a proof, given the distribution over logic programs.

Our prototype offers three main default security policies that can be used to
compose more complex application security requirements. First

secure(C, N, D) :-

member(d(C,N), D),

node(N, Op),

trustable(Op).

that checks if a component C is actually deployed to an existing node N (as per
deployment D) and that the infrastructure operator Op managing N is trustable
according to the application operator. Then

secureApp(A,D) :-

app(A,L),

deployment(L,D),

secureComponents(A,L,D).

secureComponents(A, [], _).

secureComponents(A, [C|Cs],D) :-

secureComponent(C,N,D),

secureComponents(A,Cs,D).

that checks whether, according to an input deployment D, each component of
a given application A can be securely deployed, i.e. if secureComponent(C, N,

D) holds for all components C of A. The application operator is therefore asked
to define a secureComponent(C, N, D) for each of the application components,
always including the default predicate secure(C, N, D).

4.1 Motivating Example Continued

In this section, we retake the example of Section 3.1 and we show how ProbLog
permits to naturally express both security capabilities of an infrastructure and
security requirements of an application.

Node Descriptors can be expressed by listing ground facts, possibly featuring
a probability that represents their reliability according to the infrastructure
provider. For instance, fog1 directly operated by the application operator appOp

is described as

node(fog1,appOp).

0.9::authentication(fog1).

5 Both r and {ci} can have variable (upper-case) or constant (lower-case) input pa-
rameters.

48

10 A. Brogi et al.

resource_monitoring(fog1).

iot_data_encryption(fog1).

0.95::firewall(fog1).

public_key_cryptography(fog1).

0.95::wireless_security(fog1).

obfuscated_storage(fog1).

All the Node Descriptors made following this template form a description of the
security capabilities available in the infrastructure.
Application operators can define the topology of an application by specifying an
identifier and the set of its components. For instance, the application of Figure
3 can be simply denoted by the fact

app(smartbuilding, [iot_controller, data_storage, dashboard]).

Then, they can define the security requirements of the application both as Com-

ponent Requirements and Application Requirements. In our example, the Component

Requirements can be simply declared as

secureComponent(iot_controller, N, D) :-

physical_security(N),

secure(iot_controller, N, D).

secureComponent(data_storage, N, D) :-

secure_storage(N),

access_logs(N),

network_ids(N),

secure(data_storage, N, D).

secureComponent(dashboard, N, D) :-

host_ids(N),

resource_monitoring(N),

secure(dashboard, N,D).

where the custom security policies physical security(N) and secure storage(N)

are defined as

secure_storage(N) :-

backup(N),

(encrypted_storage(N); obfuscated_storage(N)).

physical_security(N) :- anti_tampering(N); access_control(N).

Analogously, the Application Requirements that concern the application as a whole
can be specified by extending the default policy secureApp(A,D) as follows

mySecureApp(A,D) :-

secureApp(A,D),

deployment(L,D),

extras(D).

where the custom security policy extras(N) checking for Public Key Cryptography

and Authentication at all nodes are (recursively) defined as

49

Secure Apps in the Fog: Anything to Declare? 11

extras([]).

extras([d(C,N)|Ds]) :-

public_key_cryptography(N),

authentication(N),

extras(Ds).

Finally, application operators can express their trust degrees towards each in-
frastructure operator as the probability of trusting it (i.e., t ∈ [0, 1]). In our
example, we have

0.8::trustable(cloudOp1).

0.8::trustable(cloudOp2).

0.9::trustable(fogOp).

trustable(appOp).

Our prototype can be used to find (via a generate & test approach) all deploy-
ments that satisfy the security requirements of the example application to a
given infrastructure, by simply issuing the query6

query(mySecureApp(smartbuilding,L)).

As shown in Figure 5, relying on ProbLog out-of-the-box algorithms, SecFog pro-
totype returns answers to the query along with a value in [0, 1] that represents
the aggregate security level of the inferred facts, i.e. the probability that a de-
ployment can be considered secure both according to the declared reliability of
the infrastructure capabilities and to the trust degree of the application operator
in each exploited infrastructure provider.
If the application operator is only considering security as a parameter to lead
her search, she would try to maximise the obtained metric and, most probably,
deploy all three components to Fog 3. However, security might need to be con-
sidered together with other parameters so to find a trade-off among them. In the
next section, we propose a simple multi-objective optimisation and we apply it
to our motivating example.

5 Multi-Objective Optimisation

Naturally, the quantitative results obtained with ProbLog can be used to op-
timise the security level of any application deployment, by simply taking the
maximum value for our query. As we will show over an example in the next
section, it is possible to exploit the SecFog methodology to optimise the security
level together with other metrics. In this work, as in [14], given a deployment ∆,
we will try to optimise the objective function

r(∆) =
∑
m∈M

ωm · m̂(∆)

6 Naturally, it is also possible to specify one particular deployment and assess its
security level only.

50

12 A. Brogi et al.

Fig. 5. Results of the motivating example.

where M is the set of metrics to be optimised, ωm is the weight7 assigned to each

metrics (so that
∑
m∈M ωm = 1) and m̂(∆) is the normalised value of metric

m for deployment ∆, which – given the set D of candidate deployments – is
computed as:

– m̂(∆) = m(∆)−mind∈D{m(d)}
maxd∈D{m(d)}−mind∈D{m(d)} when the m(∆) is to be maximised, and

– m̂(∆) = maxd∈D{m(d)}−m(∆)
maxd∈D{m(d)}−mind∈D{m(d)} when m(∆) is to be minimised.

Therefore, since we assumed that the higher the value of r(∆) the better is
deployment ∆, we will choose ∆ such that r(∆) = max∆∈D{r(∆)}. In what fol-
lows, we solve the motivating example by employing this optimisation technique
on all attributes of Table 1 along with the security levels computed in Section 4.

5.1 Motivating Example Continued

In our motivating example, we will attempt to maximise QoS-assurance and
security, whilst minimising cost (in which we include the cost for the 4G connec-
tion at Fog 2 when needed). However, different application operators may want
to either maximise or minimise the Fog resource consumption of their deploy-
ment, i.e. they may look for a Fog-ward or for a Cloud-ward deployment. Hence,
concerning this parameter, we will consider both situations. Table 2 show the
values of the Fog-ward (i.e., rF (∆)) and of the Cloud-ward (i.e., rC(∆)) objective
function.

7 For the sake of simplicity, we assume here ωm = 1
|M| , which can be tuned differently

depending on the needs of the application operator.

51

Secure Apps in the Fog: Anything to Declare? 13

Table 2. Ranking of eligible deployments.

Dep. ID IoTController DataStorage Dashboard rF (∆) rC(∆)

∆1 Fog 2 Fog 3 Cloud 2 0.53 0.28

∆2 Fog 2 Fog 3 Cloud 1 0.63 0.38

∆3 Fog 3 Fog 3 Cloud 1 0.85 0.60

∆6 Fog 3 Fog 3 Cloud 2 0.75 0.50

∆15∗ Fog 2 Cloud 1 Cloud 2 0.15 0.40

∆16∗ Fog 2 Cloud 1 Cloud 1 0.51 0.76

In the Fog-ward case, when looking for the best trade-off among QoS-assurance,
resource consumption, cost and security level, the most promising deployment is
not ∆2 anymore (as it was in [5]). Indeed, ∆3 scores a much better ranking when
compared to ∆2. Furthermore, in the Fog-ward case, the 4G upgrade at Fog 2,
which makes it possible to enact ∆15 and ∆16, is not worth the investment due
to the low score of both deployments. Conversely, in the Cloud-ward case (even
though ∆3 would still be preferable), ∆16 features a good ranking value, despite
requiring to upgrade the connection available at Fog 2.

6 Concluding Remarks

In this paper, we proposed a declarative methodology, SecFog, which can be used
to assess the security level of multi-component application deployments to Fog
computing infrastructures. With a proof-of-concept implementation in ProbLog,
we have shown how SecFog helps application operators in determining secure
deployments based on specific application requirements, available infrastructure
capabilities, and trust degrees in different Fog and Cloud providers. We have also
shown how SecFog can be used synergically with other predictive methodologies
to perform multi-objective optimisation of security along with other metrics
(e.g., deployment cost, QoS-assurance, resource usage). In our future work we
plan to:

– enhance SecFog by combining it with existing strategies that have been used
to quantify trust degrees (e.g., Bayesian or Dempster–Shafer theories as in
[34]) based on direct experience, possibly considering also the mobility of
Fog nodes and IoT devices,

– evaluate the possibility to use SecFog with meta-heuristic optimisation tech-
niques (e.g., genetic or swarm intelligence algorithms), also taming the time
complexity of the generate & test approach we prototyped, and

– further engineer our proof-of-concept implementation and show its applica-
bility to actual use cases (e.g., based on the Fog application of [7]).

References

1. OpenFog Consortium. http://www.openfogconsortium.org/

52

14 A. Brogi et al.

2. EU Cloud SLA Standardisation Guidelines (2014), https://ec.europa.eu/digital-
single-market/en/news/cloud-service-level-agreement-standardisation-guidelines

3. Belle, V.: Logic meets probability: towards explainable ai systems for uncertain
worlds. In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI. pp. 19–25 (2017)

4. Brogi, A., Forti, S.: QoS-Aware Deployment of IoT Applications Through the Fog.
IEEE Internet of Things Journal 4(5), 1185–1192 (Oct 2017)

5. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your Fog applications, prob-
ably. In: Rana, O., Buyya, R., Anjum, A. (eds.) Proceedings of 1st IEEE Int.
Conference on Fog and Edge Computing (2017)

6. Brogi, A., Forti, S., Ibrahim, A.: Deploying fog applications: How much does it
cost, by the way? In: Proceedings of the 8th International Conference on Cloud
Computing and Services Science. pp. 68–77. SciTePress (2018)

7. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the fog: An active learning
lab with fog computing. In: Fog and Mobile Edge Computing (FMEC), 2018 Third
International Conference on. pp. 79–86. IEEE (2018)

8. Choo, K.K.R., Lu, R., Chen, L., Yi, X.: A foggy research future: Advances and
future opportunities in fog computing research (2018)

9. Dastjerdi, A.V., Buyya, R.: Fog computing: Helping the internet of things realize
its potential. Computer 49(8), 112–116 (Aug 2016)

10. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Machine
Learning 100(1), 5–47 (2015)

11. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its
application in link discovery. In: Proceedings of the 20th International Joint Con-
ference on Artifical Intelligence. pp. 2468–2473 (2007)

12. Goettelmann, E., Dahman, K., Gateau, B., Dubois, E., Godart, C.: A security
risk assessment model for business process deployment in the cloud. In: Services
Computing (SCC), 2014 IEEE International Conference on. pp. 307–314. IEEE
(2014)

13. Guerrero, C., Lera, I., Juiz, C.: A lightweight decentralized service placement policy
for performance optimization in fog computing. Journal of Ambient Intelligence
and Humanized Computing (Jun 2018)

14. Guerrero, C., Lera, I., Juiz, C.: Resource optimization of container orchestration:
a case study in multi-cloud microservices-based applications. The Journal of Su-
percomputing 74(7), 2956–2983 (Jul 2018)

15. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments. Software: Practice and Experience
47(9), 1275–1296 (2017)

16. Hamid Reza Arkian, Abolfazl Diyanat, A.P.: Mist: Fog-based data analytics scheme
with cost-efficient resource provisioning for IoT crowdsensing applications. Journal
of Network and Computer Applications 82, 152 – 165 (2017)

17. Hong, H.J., Tsai, P.H., Hsu, C.H.: Dynamic module deployment in a fog com-
puting platform. In: 2016 18th Asia-Pacific Network Operations and Management
Symposium (APNOMS). pp. 1–6 (Oct 2016)

18. Kaur, A., Singh, M., Singh, P., et al.: A taxonomy, survey on placement of virtual
machines in cloud. In: 2017 International Conference on Energy, Communication,
Data Analytics and Soft Computing (ICECDS). pp. 2054–2058. IEEE (2017)

19. Luna, J., Taha, A., Trapero, R., Suri, N.: Quantitative reasoning about cloud
security using service level agreements. IEEE Transactions on Cloud Computing
5(3), 457–471 (July 2017)

53

Secure Apps in the Fog: Anything to Declare? 15

20. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application mod-
ule management for fog computing environments. ACM Transactions on Internet
Technology (TOIT) (2018)

21. Mezni, H., Sellami, M., Kouki, J.: Security-aware SaaS placement using swarm
intelligence. Journal of Software: Evolution and Process (2018)

22. Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M.A., Choudhury, N.,
Kumar, V.: Security and privacy in fog computing: Challenges. IEEE Access 5,
19293–19304 (2017)

23. Nacer, A.A., Goettelmann, E., Youcef, S., Tari, A., Godart, C.: Obfuscating a
business process by splitting its logic with fake fragments for securing a multi-
cloud deployment. In: Services (SERVICES), 2016 IEEE World Congress on. pp.
18–25. IEEE (2016)

24. Newman, S.: Building microservices: designing fine-grained systems. ” O’Reilly
Media, Inc.” (2015)

25. Ni, J., Zhang, K., Lin, X., Shen, X.: Securing fog computing for internet of things
applications: Challenges and solutions. IEEE Comm. Surveys & Tutorials (2017)

26. OpenFog: OpenFog Reference Architecture (2016)
27. Rahbari, D., Nickray, M.: Scheduling of fog networks with optimized knapsack by

symbiotic organisms search. In: 2017 21st Conference of Open Innovations Associ-
ation (FRUCT). pp. 278–283 (Nov 2017)

28. Schoenen, S., Mann, Z.Á., Metzger, A.: Using risk patterns to identify violations of
data protection policies in cloud systems. In: International Conference on Service-
Oriented Computing. pp. 296–307. Springer (2017)

29. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards qos-aware fog service
placement. In: 2017 IEEE 1st International Conference on Fog and Edge Comput-
ing (ICFEC). pp. 89–96 (May 2017)

30. Taneja, M., Davy, A.: Resource aware placement of iot application modules in
fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). pp. 1222–1228 (May 2017)

31. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learn-
ing algorithms for containers in fog computing. IEEE Transactions on Services
Computing (2018)

32. Varshney, P., Simmhan, Y.: Demystifying Fog Computing: Characterizing Archi-
tectures, Applications and Abstractions. In: 2017 IEEE 1st International Confer-
ence on Fog and Edge Computing (ICFEC). pp. 115–124 (2017)

33. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applica-
tions in edge computing environments. IEEE Access 5, 2514–2533 (2017)

34. Wei, Z., Tang, H., Yu, F.R., Wang, M., Mason, P.: Security enhancements for
mobile ad hoc networks with trust management using uncertain reasoning. IEEE
Transactions on Vehicular Technology 63(9), 4647–4658 (Nov 2014)

35. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog Orchestration
for Internet of Things Services. IEEE Internet Computing 21(2), 16–24 (2017)

36. Wen, Z., Ca la, J., Watson, P., Romanovsky, A.: Cost effective, reliable and se-
cure workflow deployment over federated clouds. IEEE Transactions on Services
Computing 10(6), 929–941 (2017)

37. Zhang, P., Zhou, M., Fortino, G.: Security and trust issues in fog computing: A
survey. Future Generation Computer Systems 88, 16–27 (2018)

54

Towards a Generalizable Comparison of the

Maintainability of Object-Oriented and

Service-Oriented Applications

Justus Bogner1,2, Bhupendra Choudhary2, Stefan Wagner2, and Alfred
Zimmermann1

1 University of Applied Sciences Reutlingen, Germany
{justus.bogner,alfred.zimmermann}@reutlingen-university.de

2 University of Stuttgart, Germany
{justus.bogner,stefan.wagner}@informatik.uni-stuttgart.de

bhupendra.choudhary@gmx.de

Abstract. While there are several theoretical comparisons of Object
Orientation (OO) and Service Orientation (SO), little empirical research
on the maintainability of the two paradigms exists. To provide support
for a generalizable comparison, we conducted a study with four related
parts. Two functionally equivalent systems (one OO and one SO version)
were analyzed with coupling and cohesion metrics as well as via a con-
trolled experiment, where participants had to extend the systems. We
also conducted a survey with 32 software professionals and interviewed 8
industry experts on the topic. Results indicate that the SO version of our
system possesses a higher degree of cohesion, a lower degree of coupling,
and could be extended faster. Survey and interview results suggest that
industry sees systems built with SO as more loosely coupled, modifiable,
and reusable. OO systems, however, were described as less complex and
easier to test.

Keywords: Maintainability · Service Orientation · Object Orientation
· Metrics · Experiment · Survey · Interviews

1 Introduction

The ability to quickly and cost-efficiently change applications and services due to
new or redacted requirements is important for any company relying on custom
software. The associated quality attribute is maintainability: the degree of effec-
tiveness and efficiency with which software can be changed [5], e.g. to adapt or
extend it. The introduction of Object Orientation (OO) lead to maintainability-
related benefits like encapsulation, abstraction, inheritance, or increased support
for modularization [3]. In today’s enterprise world, however, systems built on Ser-
vice Orientation (SO) are increasingly more common. By introducing a higher
level of abstraction, Service-Based Systems (SBSs) consist of loosely coupled
distributed components with well defined technology-agnostic interfaces [7]. SO

55

2 J. Bogner et al.

aims to promote interoperability, reuse of cohesive functionality at a business-
relevant abstraction level, and encapsulation of implementation details behind
published interfaces [4].

So while Service Orientation seems to surpass Object Orientation w.r.t. main-
tainability from a theoretical point of view, this comparison is very hard to gen-
eralize in a practical setting. Developers can build systems of arbitrary quality in
both paradigms, although the inherent properties of both paradigms may make
it easier or harder to build well maintainable systems. Very little empirical re-
search exists on the topic of comparing the maintainability of OO and SO (see
Sect. 2). Results from such studies can bring valuable insights into the evolution
qualities of these two paradigms. Research in this area can also highlight poten-
tial deficiencies and weaknesses, which helps raising awareness for developers as
well as providing decision support for choosing a paradigm for a project.

This is why we conducted a study to compare the maintainability of object-
oriented and service-oriented applications from different perspectives. For a prac-
tical empirical point of view, we constructed two functionally equivalent systems
(one based on OO and the other on SO) and compared them with metrics as well
as by means of a controlled software development experiment. To gain insight
into software professionals’ subjective estimation of the two paradigms, we con-
ducted an industry survey as well as expert interviews. In the remainder of this
paper, we first introduce related work in this area. Then we present the details
of our 4-part study including the methods, results, and limitations. Lastly, we
conclude by summarizing our results and putting them into perspective.

2 Related Work

A small number of scientific publications exists that compare Service Orienta-
tion and Object Orientation. In 2005 when SBSs were still very young, Baker
and Dobson [1] published a theoretical comparison of Service-Oriented Archi-
tecture (SOA) and Distributed Object Architectures (DOA) based on literature
and personal experience. Their comparison is very high-level and not focused
specifically on maintainability. While they highlight a large number of similari-
ties, they also point out the more coarse-grained interfaces of SOA that lead to
simplified communication and less cognitive overhead for developers of service
consumers. Moreover, they point out the missing notion of inheritance and in-
terface specialization in SOA, which they acknowledge as initially less complex,
but potentially limiting in the long term.

Stubbings [10] provided another theoretical comparison that also emphasizes
the direct line of evolution from OO to SO. Beneficial OO concepts like encap-
sulation and reuse have been adapted to a higher abstraction level in Service
Orientation that is closer to the business domain. He further assessed the struc-
tural and technological complexity to be higher in a system based on Service
Orientation. Concerning communication, he reported the focus for OO to be
primarily internal while SO would be more aimed at external interoperability.

56

Comparing the Maintainability of Object and Service Orientation 3

One of the few empirical studies on the subject was performed by Pere-
pletchikov et al. [8] on two versions of a fictional Academic Management System
(one service-oriented version, the other one object-oriented). To compare the
maintainability of the two, they employed traditional source code metrics like
Lines of Code, Cyclomatic Complexity, as well as the OO metrics suite from Chi-
damber and Kemerer. They focused on the structural properties size, complexity,
coupling, and cohesion. As findings, they reported that the SO version provides
better separation of business and implementation logic and a lower degree of
coupling. The OO system, however, would be overall less complex.

Lastly, Mansour and Mustafa [6] conducted a similar empirical study. They
constructed a service-oriented version of an existing OO Automated Teller Ma-
chine system and compared the two versions with a set of metrics, very similar
to the ones in [8]. They reported that the SO version of their system inhibited a
higher degree of reusability and a lower degree of coupling while the complexity
of the OO version was lower. Additionally, they described difficulties when trying
to apply OO metrics to a Service-Based System and advocated the need for a
set of service-oriented maintainability metrics.

Existing studies are either of a theoretical nature or solely focused on met-
rics. While the presented empirical studies provide first valuable support for a
comparison with metrics, they also reported difficulties due to a lack of mutu-
ally applicable metrics. Not all OO metrics can be used for SBSs. Moreover,
additional metric evaluations with other systems will be of value while new ap-
proaches can bring different perspectives to the discussion.

3 Study Design

Based on the results and lessons learned of the related work, we therefore con-
ducted a study with four different parts. First, we constructed a service-oriented
and an object-oriented version of a simple Online Book Store (OBS) that pro-
vided functionality to register as a user as well as to browse and order books.
The service-oriented version was implemented with RESTful NodeJS services us-
ing the Express framework3 and an Angular frontend4 while the object-oriented
version is a Java monolith relying on JavaServer Pages (JSP) as a web UI. These
two systems were compared using a set of coupling and cohesion metrics.
To respect the two system versions, we needed metrics that can be applied both
to service- as well as object-oriented systems. This is often difficult to achieve,
since coupling and cohesion metrics are usually designed for either of the two
paradigms. We therefore chose two metrics for each structural property that
could be adapted to be mutually applicable.

For coupling, we chose Absolute Importance of the Service (AIS) and Absolute

Dependence of the Service (ADS). Both have been specifically designed for SBSs
and represent the number of clients invoking a service (AIS) and the number of

3 https://expressjs.com
4 https://angular.io

57

4 J. Bogner et al.

Fig. 1. Object-Oriented Version of OBS

other services a service depends on respectively (ADS) [9]. They can be easily
adapted to object-oriented systems by substituting services with classes.

For cohesion, we selected two object-oriented metrics, namely Tight Class Co-

hesion (TCC) and Loose Class Cohesion (LCC) [2]. These metrics attempt to
measure the relatedness of class functionality based on common class attributes
that the methods operate on. TCC represents the relative number of directly
connected methods while LCC also includes indirectly connected methods (via
other intermediate methods). To adapt these metrics to a service-oriented con-
text, class methods are substituted by service operations.

While the majority of maintainability metrics use structural properties as
a proxy, industry is really interested in something else: how fast can changes
or features be implemented for the system? To account for this, the same sys-
tems were used in a controlled experiment. Software practitioners had to
implement search functionality for books while the time was measured. We then
analyzed whether the version made a noticeable difference. 8 software develop-
ers participated in the experiment, four per system version of OBS. 7 of the 8
developers were from Germany. They had an average of ⇠4.1 years of experience
(OO AVG: 4.5 years, SO AVG: 3.75 years). All of them had worked with their
respective paradigm before. We measured the time necessary to complete the
exercise as well as the changed Lines of Code for the backend part.

To complement these two empirical approaches, we also conducted an in-
dustry survey to capture the general sentiment of developers towards the two

58

Comparing the Maintainability of Object and Service Orientation 5

Fig. 2. Service-Oriented Version of OBS

paradigms. Software professionals filled out an online questionnaire where they
were asked to compare structural and maintainability-related properties of the
two paradigms based on their personal experience. 32 participants completed
our web-based questionnaire that was distributed via personal industry con-
tacts, mailing lists, and social media. The survey was hosted from 2018-04-19
until 2018-05-06 and consisted of 12 questions, mostly with Likert scale answers.
Most participants were from Germany and India and all had at least three years
of professional experience. They had to comment on the average condition of
different structural properties (e.g. coupling) and subquality attributes of main-
tainability in SW projects based on either OO or SO. Lastly, they had to answer
some questions where they ranked the three paradigms Object Orientation, Ser-

vice Orientation, and Component-Based for similar attributes.
As a more in-depth follow-up to the survey, we conducted qualitative in-

terviews with several experts to complement the broader scope of the survey
and to dive more deeply into some of the topics. Similar to the survey, we also
asked for their personal experience and preference w.r.t. the maintainability of
the two paradigms under study. This was the fourth and final part of our study.
All 8 experts had an IT or Engineering background and had previously worked
with object-oriented as well as service-oriented systems. 7 of the 8 experts were
older than 30 years, i.e. had considerable professional experience. The inter-
views started with an introduction of the two OBS versions and a discussion

59

6 J. Bogner et al.

about their strengths and weaknesses. This was followed by similar questions
as in the survey about properties of the two paradigms and the participants’
experience.

Please refer to our GitHub repository for the source code of the systems as
well as the detailed survey questions and results 5.

4 Results

For the metric-based part of the study, we measured all four component-level
metrics for both the object-oriented (Fig. 1) and the service-oriented version
(Fig. 2) of the Online Book Store (OBS). Since each version of the system in-
cludes three components (services or classes respectively), we have a total of
12 measurements (see Table 1). When looking at the AVG values per version
and metric (see Fig. 3), we can see that the service-oriented version overall has
slightly better values, i.e. on average lower coupling and higher cohesion per
component.

Table 1. Coupling and Cohesion Metric Values per Component

Component AIS ADS TCC LCC

OO Version Administration 1 2 0.00 0.40

Register 1 2 0.16 0.50

Shopping_Cart 2 0 0.33 0.33

SO Version AdminService 1 1 0.67 0.67

BookService 1 1 0.33 0.50

CartService 1 1 1.00 1.00

During the controlled experiment, it took less time and effort to extend
the service-oriented version of OBS (see Fig. 4). The mean duration for the
SO version was 0.8 h while it was 0.99 h for the OO version. Respectively, the
mean effort was 7.25 LoC for SO and 12.5 LoC for OO. When analyzing the
significance of the mean differences in our sample with an unpaired t-test, we
found two-tailed p-values smaller than 0.05 (p-valueduration: 0.0479, p-valueeffort:
0.005).

The following part highlights the results of the survey questions. For Lik-
ert scale question, we also present the aggregated score per paradigm (Strongly
Disagree: -2, Disagree: -1, Neutral: 0, Agree: 1, Strongly Agree: 2).

Question: In my experience, software based on <paradigm> has a compara-

tively low degree of coupling.
5 https://github.com/xJREB/research-oo-vs-so

60

Comparing the Maintainability of Object and Service Orientation 7

1.33 1.33

0.16

0.41

1 1

0.67
0.72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Absolute Importance of
the Service

Absolute Dependence of
the Service

Tight Class Cohesion Loose Class Cohesion

M
et

ric
 V

al
ue

AVG in OO Version AVG in SO Version

Fig. 3. Average Coupling and Cohesion Metric Values per Version

0.76 0.91 0.83 0.68

1.16
0.91 0.9 0.98

0

0.5

1

1.5

SO SO SO SO OO OO OO OO

P1 P3 P5 P7 P2 P4 P6 P8

Ti
m

e
in

 H
ou

rs

Fig. 4. Experiment: Duration per Participant

1

2

7

4

8

20

15

6

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orientation

Object Orientation

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 5. Question: In my experience, software based on <paradigm> has a compara-
tively low degree of coupling.

61

8 J. Bogner et al.

For coupling, participants clearly favored Service Orientation (score: 30) over
Object Orientation (score: 8). Over 80% reported that service-oriented systems
were in their experience of a more loosely coupled nature while only 50% reported
the same for object-oriented systems (see Fig. 5). This result was to be expected,
since loose coupling and the reduction of dependencies is a major driver in SBSs.

Question: In my experience, software based on <paradigm> facilitates a com-

paratively high degree of cohesion.

When it came to cohesion, the results were less decisive (SO: 18, OO: 14).
Overall, roughly 13% more participants agreed with this statement for Service
Orientation (SO: ⇠63%, OO: 50%). This does not seem to be a lot, when we
consider the prevalence of the “cohesive services grouped around business capa-
bilities” theme in an SOA and especially in a Microservices context.

Question: In my experience, software based on <paradigm> promises a sig-

nificant extent of reusability.

Participants reported higher reusability for their service-oriented software
than for their object-oriented software. While the scores were pretty even (SO:
25, OO: 22), ⇠78% of participants agreed to this statement for SO while only
⇠59% agreed for OO. Absolute scores are so close because two more people
disagreed for SO and one more strongly agreed for OO (see Fig. 6). Overall, these
results seem to support the SO principle of business-relevant reuse granularity.

3

1

4

12

22

15

3

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orientation

Object Orientation

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 6. Question: In my experience, software based on <paradigm> promises a signif-
icant extent of reusability.

Question: In my experience, software based on <paradigm> reduces the com-

plexity of testing.
In the case of testability, Object Orientation (score: 24) was seen as more

beneficial than Service Orientation (score: 14) to reduce complexity. Roughly
72% of participants agreed with this statement for OO while only ⇠53% agreed
for SO together with 6 disagreements (see Fig. 7). This is the first category where
OO decisively wins out in the opinion of participating developers.

Lastly, developers were asked to rank the three paradigms Object Orientation,
Service Orientation, and Component-Based from their experience for three fur-
ther properties: modifiability, encapsulation/abstraction, and size/complexity.
Ranking a paradigm first provided three points, ranking it second provided two,
ranking it last provided one point respectively. The results (see Table 2) indi-

62

Comparing the Maintainability of Object and Service Orientation 9

6 9

9

14

22

3

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orientation

Object Orientation

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 7. Question: In my experience, software based on <paradigm> reduces the com-
plexity of testing.

Table 2. Question: In your experience, which of the three paradigms provides on
average the most favorable degree of <attribute>?

Object
Orientation

Component-
Based

Service
Orientation

Modifiability 63 43 86

Encapsulation and Abstraction 58 43 85

Size and Complexity 74 39 73

cate that participants experienced systems based on Service Orientation as more
modifiable and with a better degree of encapsulation and abstraction as for the
other two paradigms. For size and complexity, however, participants reported
that they believed the manageability of these properties to be roughly equal for
OO and SO, with OO winning out by one point.

We compiled results from the qualitative interviews in several areas. For
the topic of modifiability, 5 of the 8 experts reported that on average in their
experience service-oriented systems are more beneficial than object-oriented ones
when it comes to evolving already developed systems. Participants emphasized
the advantages of service-based modularity, which would increase independence
in the system and reduce costs in the long run. Some experts highlighted that
SO is more convenient when requirements frequently change.

Concerning complexity, most experts indicated based on their past software
projects that systems based on Object Orientation are on average less complex
than SBSs from a structural and technological point of view. They also men-
tioned mature tool support in the field of object-oriented SW development that
would ease some of the difficulties. In the service-oriented space, however, tool
support would be lacking.

When comparing the average analyzability of the two paradigms, the ma-
jority of participants favored Service Orientation over Object Orientation. The
structure of the system would be easier to grasp when referring to services as
coarse-grained components. Moreover, experts experienced less dependencies in
SBSs, which also helped to comprehend the structure of a system.

63

10 J. Bogner et al.

Lastly, in addition to the lack of mature tool support for Service Orientation,
participants reported the danger of ripple effects when changing services, espe-
cially with service interface changes that require updates of all service consumers.
Some experts also stressed that Object Orientation was a valuable paradigm to
be used for the inner low-level design of single services and that it would nicely
complement the service-based high-level architecture of a system. So the choice
would not always be either Service or Object Orientation.

5 Threats to Validity

Several things have to be mentioned to put our results into appropriate perspec-
tive. For the metric-based evaluation, the tested systems were artificially
constructed and are not real industry or open source systems. While we tried
to design and implement them as close to a real use case as possible, we also
needed something of manageable size and complexity, which may impact the
generalizability of the comparison (e.g. the AVG metric values were computed
from only three components). The chosen technology for both versions may also
be a limitation. Results with other programming languages or frameworks could
be different. Moreover, we only used a small number of metrics and targeted
only two structural properties (coupling and cohesion). Other metrics, e.g. for
size or complexity, could have yielded additional insights, but were neglected
due to project time constraints. Finally, we calculated the metric values manu-
ally due to missing tool support. Since the systems are of limited size and we
double-checked each value, the error probability should still be very small.

In the case of the controlled experiment, the same limitations of the con-
structed systems as described above hold true. The two different programming
languages (Java and NodeJS/JavaScript) also limit the comparability of the LoC
effort. Additionally, we only had a small number of participants. Potentially dif-
ferent development experience and skill levels could not be accounted for when
assigning the participants to the two versions of OBS. Lastly, the experiment
consisted of only one exercise, which can only test the modifiability of certain
parts of the system.

As with most quantitative surveys, a number of limitations have to be
mentioned. First, the number of participants (32) only provides limited general-
izability, as a different population subset may have different views on the subject.
Moreover, we could not guarantee that the participating developers indeed had
sufficient experience with all three software paradigms. Lastly, the subjective es-
timation of the inherent qualities of a paradigm may be skewed by a particularly
bad experience with a suboptimally designed system. Overall, it is important
to keep in mind that personal preference of developers is not necessarily of a
rational nature.

As opposed to our survey participants, we could select our interview ex-
perts based on their experience with the two paradigms under evaluation, at
least up to a certain degree. However, there is still a chance that some experts
were less proficient with one of the paradigms or were heavily influenced by one

64

Comparing the Maintainability of Object and Service Orientation 11

specific project of theirs. Moreover, there is a chance that we slightly influenced
the experts by posing questions that should direct the conversation to the prop-
erties under evaluation. Lastly, our interviews were conducted and analyzed in
a fairly loosely structured manner without a rigorous methodology.

6 Conclusion

To provide additional evidence for a generalizable comparison of the maintain-
ability of Service Orientation and Object Orientation, we conducted a study
with four parts: a metric-based comparison of two functionally equivalent sys-
tems (one SO and one OO version); a controlled experiment where practitioners
had to extend the same systems; an industry survey with comparative questions
about OO and SO; and expert interviews as a more in-depth follow-up to the
survey.

The empirical results indicate that the service-oriented version of our Online
Book Store system consists of more cohesive and more loosely coupled compo-
nents and could also be extended faster and with less effort (LoC) by experiment
participants. Survey and interview results seem to go in the same direction: in-
dustry professionals experienced higher modifiability, lower degrees of coupling,
higher reusability, and stronger encapsulation and abstraction in their service-
oriented projects. For their average object-oriented systems, however, they re-
ported comparatively lower complexity and better testability.

While these results can aid in the decision process for a paradigm and can
highlight important maintainability-related focus points when designing systems
with either paradigm, it is still important to remember that we can build software
of arbitrary quality in both paradigms. Moreover, Object Orientation can be a
useful complement for the inner architecture of services.

Acknowledgments This research was partially funded by the Ministry of Sci-
ence of Baden-Württemberg, Germany, for the Doctoral Program “Services Com-
puting” (http://www.services-computing.de/?lang=en).

References

1. Baker, S., Dobson, S.: Comparing Service-Oriented and Distributed Object Archi-
tectures. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3760 LNCS, pp.
631–645 (2005)

2. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. In:
Proceedings of the 1995 Symposium on Software reusability - SSR ’95. pp. 259–262.
ACM Press, New York, New York, USA (1995)

3. Booch, G.: Object Oriented Analysis & Design with Application. Pearson Educa-
tion (2006)

4. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA (2005)

65

12 J. Bogner et al.

5. International Organization For Standardization: ISO/IEC 25010 - Systems and
software engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models. Tech. rep. (2011)

6. Mansour, Y.I., Mustafa, S.H.: Assessing Internal Software Quality Attributes of
the Object-Oriented and Service-Oriented Software Development Paradigms: A
Comparative Study. Journal of Software Engineering and Applications 04(04), 244–
252 (2011)

7. Papazoglou, M.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the 7th International Conference on Properties and Ap-
plications of Dielectric Materials (Cat. No.03CH37417). pp. 3–12. IEEE Comput.
Soc (2003)

8. Perepletchikov, M., Ryan, C., Frampton, K.: Comparing the impact of service-
oriented and object-oriented paradigms on the structural properties of software.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 3762 LNCS, 431–441 (2005)

9. Rud, D., Schmietendorf, A., Dumke, R.R.: Product Metrics for Service-Oriented
Infrastructures. In: IWSM/MetriKon (2006)

10. Stubbings, G.: Service-Orientation and Object-Orientation: Complementary De-
sign Paradigms. SPARK: The ACES Journal of Postgraduate Research 1 (2010)

66

Implementation of a Cloud Services Management
Framework

Hong Thai Tran1 and George Feuerlicht1,2,3

1 Faculty of Engineering and Information Technology,
University of Technology Sydney, Australia

2Unicorn College, V Kapslovně 2767/2,130 00 Prague 3, Czech Republic
3Prague University of Economics, W. Churchill Square. 4, 130 67 Prague 3, Czech Republic

HongThai.Tran@uts.edu.au, George.Feuerlicht@uts.edu.au

Abstract. Rapid growth of various types of cloud services is creating new oppor-
tunities for innovative enterprise applications. As a result, enterprise applications
are increasingly reliant on externally provided cloud services. It can be argued
that traditional systems development methods and tools are not adequate in the
context of cloud services and that new methods and frameworks that support
these methods are needed for management of lifecycle of cloud services. In this
paper, we describe the implementation of a Service Consumer Framework (SCF)
– a framework for the management of design-time and runtime activities through-
out the lifecycle of enterprise applications that use externally provided cloud ser-
vices. The SCF framework has been evaluated during the implementation of a
large-scale project and is being continuously improved to incorporate additional
types of cloud services.

Keywords: Cloud Computing, Service Management, Frameworks

1 Introduction

Most enterprise applications today use third party cloud services to implement a signif-
icant part of their functionality. This results in hybrid environments that require the
integration of on-premises services with public cloud services made available on a pay-
per-use basis by external cloud providers. The use of third party cloud services (e.g.
payment services, storage services, etc.) in enterprise applications has many benefits,
but at the same time presents challenges as both the functional and non-functional char-
acteristics of cloud services are controlled by autonomous cloud service providers. Ser-
vice consumers are primarily responsible for the selection of services, integration of
cloud services into on-premises enterprise applications and managing continuity of op-
eration during runtime. With the increasing use of cloud services, it is important that
cloud service consumers use suitable methods and tools to manage the entire lifecycle
of enterprise applications [1]. A comprehensive framework is needed to support all

67

2

phases of service consumer lifecycle including the selection of cloud services, integra-
tion of services with enterprise applications and runtime monitoring and management
of services.

Cloud services management has been an active area of research with numerous pub-
lications addressing different cloud service lifecycle phases, in particular cloud service
selection [2-7] and service integration and monitoring [8-11]. However, most of these
research efforts take service provider perspective and do not address the issues that
arise when on-premises enterprise applications consume externally provided cloud ser-
vices. A typical scenario illustrating this situation involves an on-premises application
that consumes a range of cloud services (e.g. payment services: PayPal and eWay, stor-
age services: DropBox, Google Drive and AWS S3, mapping services: Google Maps,
etc.) via published APIs (Application Programming Interfaces) [12]. Management of
such heterogeneous environments requires both design-time and run-time support to
minimize the software maintenance effort and to ensure continuity of operation.

The main motivation for our research is to provide a detail description of the service
development lifecycle as it applies to cloud service consumers (as distinct from cloud
service providers) and to implement a prototype framework that supports this lifecycle.
In our previous work we have proposed a Service Consumer Framework (SCF) [13]
and described a cloud Service Consumer System Development Lifecycle (SC-SDLC)
[14] for managing cloud services from a service consumer perspective. In this paper,
we describe how the SCF supports design-time and run-time activities throughout the
SC-SDLC (section 3), and detail the implementation of this framework (section 4). In
the next section (section 2), we review related work on the methods and frameworks
for the management of cloud services. Section 5 are our conclusions and directions for
future work.

2 Related Work

While the management of cloud services in enterprise applications is still a subject of
extensive investigation, there is a general agreement in the literature about the individ-
ual lifecycle phases. A method for managing integrated lifecycle of cloud services was
proposed by Joshi et al. [15]. The authors have identified performance metrics associ-
ated with each lifecycle phase that include data quality, cost, and security metrics based
on SLA (Service Level Agreement) and consumer satisfaction, and they have proposed
a service repository with a discovery capability for managing cloud services lifecycle
[16]. The authors divide cloud services lifecycle into five phases: requirements speci-
fication, discovery, negotiation, composition, and consumption. During the service dis-
covery phase, service consumers search for services using service description and pro-
vider policies in a simple services database. Service information is stored as a Request
for Service (RFS) that contains functional specifications, technical specifications, hu-
man agent policy, security policy and data quality policy. Field et al. [17] present a
European Middleware Initiative (EMI) Registry that uses a decentralized architecture
to support service discovery for both hierarchical and peering topologies. The objective
of the EMI Registry is to provide robust and scalable service discovery that contains

68

3

two components: Domain Service Registry (DSR) and Global Service Registry (GSR).
Service discovery is based on service information stored in service records that contain
mandatory attributes such as service name, type of service, service endpoint, service
interface, and service expiry date.

Cloud-based application development frameworks and architectures have been the
subject of intense recent interest in the context of microservices and DevOps [18], [19].
According to Rimal et al. [20] the most important current challenge is the lack of a
standard architectural approach for cloud computing. The authors explore and classify
architectural characteristics of cloud computing and identify several architectural fea-
tures that play a major role in the adoption of cloud computing. The paper provides
guidelines for software architects for developing cloud architectures. Another notable
effort in this area is the Seaclouds project [21, 22] that aims to develop a new open
source framework for Seamless Adaptive Multi-Cloud management of service-based
applications. The authors argue that lack of standardization results in vendor lock-in
that affects all stages of the cloud applications’ lifecycle, forcing application developers
to have a deep knowledge of the providers’ APIs. Seaclouds is a software platform and
a reference architecture designed to address the heterogeneity of cloud service APIs at
IaaS (Infrastructure as a Service) and SaaS (service as a Service) levels. The Seaclouds
platform supports Discovery and Matchmaking, Cloud Service Optimization, Applica-
tion Management, Monitoring and SLA Enforcement, and Application Migration. The
authors of the Nucleous project [23] have investigated the practicability of abstracting
the differences of vendor specific deployment and management APIs and creating an
intermediary abstraction layer based on four selected PaaS platforms (cloudControl,
Cloud Foundry, Heroku, and OpenShift), and concluded that the diversities among the
platforms can be successfully harmonized. Using the Nucleous platform the effort in-
volved in switching providers can be minimized, increasing the portability and interop-
erability of PaaS applications, helping to avoid critical vendor lock-in.

Unlike the above-mentioned initiatives, we do not aim to implement a framework
for multi-cloud deployment, monitoring and orchestration of cloud services across mul-
tiple cloud platforms. Our focus is on designing a framework that improves the man-
ageability and reliability of enterprise applications that consume cloud services from
different providers with varied QoS (Quality of Service) characteristics.

3 Service Consumer Framework and SC-SDLC

Service Consumer Framework is a research prototype designed for the purpose of eval-
uating the functionality required for supporting the SC-SDLC. SCF constitutes a layer
between on-premises enterprise applications and external cloud services and consists
of four main components: Service Repository, Service Adaptors, Workflow Engine and
Monitoring Centre. The service repository records information about enterprise appli-
cations and related cloud services throughout the entire service lifecycle. The service
adaptor module contains adaptors for various categories of services. The function of a
service adaptor is to present a unified API for services from different cloud providers
for the same type of service (e.g. a payment service), transforming outgoing application

69

4

requests into the format supported by the current version of the corresponding external
service, and incoming responses into format compatible with on-premises applications.
The main function of the workflow engine is to provide failover capability in the event
of a cloud service not being available by routing application requests to an alternative
cloud service. The monitoring centre uses log data collected from service adaptors and
the workflow engine to monitor cloud services and to analyze their runtime perfor-
mance.

We have described the SC-SDLC in previous publications [24, 25]; in this section
we briefly describe the main SC-SDLC lifecycle phases and discuss how the Service
Consumer Framework supports activities during these phases. We have identified the
following five phases of SC-SDLC: Requirements Specification, Service Identification,
Service Integration, Service Monitoring and Service Optimization. We classify these
phases into design-time activities: requirements specification, service identification and
service integration, and run-time activities: service monitoring and service optimiza-
tion. Typically, business analysts are involved with the requirements specification
phase, while service identification, integration and optimization phases are the domain
of application developers. Service monitoring phase is the responsibility of system ad-
ministrators.

The SC-SDLC is closely interrelated with the Service Consumer Framework that
provides support for lifecycle phases and activities. Figure 1 illustrates how the Service
Consumer SDLC is supported by the Service Consumer Framework.

Fig. 1	Service Consumer Framework support for SC-SDLC phases

70

5

During the service requirements specification phase, business analysists record func-
tional and non-functional requirements of the services in the service repository. Func-
tional specification of the service describes what functions the service should provide
and its characteristics may vary according to the type of service (i.e. application service,
infrastructure service, etc.). The QoS (Quality of Service) non-functional attributes in-
clude service availability, response time, security requirements, and may also include
requirements such as data location and the maximum cost of the service. Once the ser-
vice is fully described and classified, the service consumer creates a Request for Service
(RFS) and records this information in the service repository. Services are categorized
according to service type (e.g. payment, storage, mapping, etc.) and this information is
used during the service identification phase to search the service repository.

The service identification phase involves searching the service repository for ser-
vices that match the RFS attempting to identify an existing service that is already cer-
tified for use (e.g. payment service with availability of 99.99 and sub-second response
time). The SCF incorporates an API that supports a repository query function (de-
scribed in section 4.1) that searches the service repository database for suitable candi-
date services. Service repository database stores detail information that includes service
features available in different versions (i.e. functional description of the service) as well
as non-functional parameters, including service reliability information recorded during
runtime. Service repository can be searched based on various parameters to identify
candidate services that are then checked for compatibility with the service specifica-
tions. If no suitable certified service is found, the service consumer will attempt to iden-
tify the service from the services available from external cloud providers. Following
verification of the functionality and performance, the service is certified and recorded
in the service repository. Certification involves extensive testing of the functionality
and performance of the service. If no suitable cloud service is found, the service may
have to be developed internally (i.e. as an on-premises service).

The service integration phase involves the integration of cloud services with on-
premises enterprise applications. This activity varies depending on the type of cloud
service and may involve the development of a service adaptor and design of specialized
workflows to improve the reliability of applications by incorporating failover capabil-
ity. The SCF repository records the relationships between services (service versions)
and corresponding enterprise applications. The final activity of the cloud service inte-
gration phase comprises integration testing, provisioning, and deployment, similar to
activities during the implementation of on-premises application.

The service monitoring phase involves measuring runtime QoS attributes and com-
paring their values with those specified in the corresponding SLA. System administra-
tors use the monitoring centre to identify performance issues. Local monitoring is re-
quired as QoS values measured at the consumer site may differ from the values pub-
lished by cloud service providers. Data generated during the monitoring phase is stored
in the monitoring database.

The final SC-SDLC phase is concerned with service optimization and continuous
service improvement. Service optimization may involve replacing existing services
with new versions as these become available, or by identifying alternative cloud ser-
vices from a different provider with improved QoS characteristics.

71

6

4 SCF Implementation

This section describes the implementation details of the components of the SCF frame-
work. Additional implementation details are available in [26] and the SCF source code
has been published on GitHub (https://github.com/tranhongthai/SCF). The SCF proto-
type is developed using .Net technologies: Microsoft SQL Server [27] was used to im-
plement the service repository and monitoring center databases, ASP.Net MVC 5 [28]
was used to build the service repository and the service monitoring center tools, and
Windows Communication Foundation (WCF) [29] was used to implement service re-
pository and monitoring centre APIs. The SCF is deployed on an AWS (Amazon Web
Services) EC2 server and the databases are implemented as AWS RDS (Relational Da-
tabase System) services. The workflow engine and service adaptors are implemented
as Class Libraries (DLL) in C# programming language and released using NuGet - Mi-
crosoft package manager for .NET (https://www.nuget.org/packages). Table 1 lists the
main SCF modules, technologies used for their implementation and deployment plat-
forms.

Table 1. SCF implementation technologies and deployment platforms

SCF
Modules

Implementation
Technology

Deployment
Platform

Service Repository ASP.NET MVC
Microsoft SQL Server

AWS EC2
AWS RDS

Service Adaptors Class Library (.DDL) Nuget
Workflow Engine Class Library (.DDL) Nuget
Monitoring Center Windows Service Application

Microsoft SQL Server
Window Foundation Communication

AWS EC2
AWS RDS

4.1 Service Repository

Service repository is a key component of SCF framework that maintains information
about cloud services throughout the entire service lifecycle. A simplified data model
(Entity-Relationship Diagram) of the service repository is shown in Figure 2. Service
is a central entity of the service repository with attributes that describe services and
include service requirements as captured by the SLA. In order to manage service evo-
lution and keep track of changes in service functionality, information about service ver-
sions is stored in the repository. The ServiceVersion entity includes functional and non-
functional descriptors of the service that are further described by the information in the
related QoS and ServiceFeature entities. This allows service versions to have different
QoS values and features. ServiceCategory is used to categorize services according to
their type (e.g. payment, storage, etc.); the self-referencing relationship produces a ser-
vice type hierarchy, so that for example, a storage service constitutes a subtype of an
infrastructure service. ServiceProvider entity represents service providers and contains

72

7

service provider attributes including provider description and provider ranking (indica-
tion of provider reputation). The Application entity represents on-premises applications
that are associated with requirements specifications (Specification)
that are matched with services (ServiceVersion) based on the compatibility of func-
tional and non-functional attribute values. Results of service invocations are logged at
runtime, and are represented by the Log entity. Service log records include response
time, results of service invocations, and other non-functional attributes collected at run-
time and used for analysis of service performance. Responsibility for managing services
is assigned to system administrators and represented by the Administrators entity.

Service Repository Interface
Service repository APIs are implemented using WCF and provide access to repository
information. The following methods have been implemented:

• Search: this method is used to query the service repository database and to re-
trieve services based on the specified values of QoS parameters (e.g. service
type, availability, response time, etc.)

Fig. 2. Service Repository Entity Relationship Diagram

73

8

• GetInfo: this method retrieves information about a specific cloud service, in-
cluding basic service description and QoS information

• UpdateQoS: this method is used to insert and update the QoS information for a
specified cloud service

4.2 Service Adaptors

Service adaptors implement generic interfaces for different types of services (e.g. a
payment service) that support common service functions (e.g. payment, refund, etc.).
This allows runtime substitution of cloud services and can improve the overall reliabil-
ity of enterprise applications. At design time, cloud services can be replaced by alter-
native services with improved QoS characteristics, as these become available. The main
function of a service adaptor is to transform application requests into the format sup-
ported by the current version of the corresponding external service, and to ensure that
incoming responses maintain compatibility with internal applications. Generic mes-
sages and methods that support common service functions are defined for each service
type and mapped into the corresponding messages and methods of specific cloud pro-
vider services. So that for example, the Dropbox adaptor transforms the generic Down-
load request into the Dropbox DownloadAsync request, and the Google Drive Adaptor
transforms this request into GetByteArrayAsync request. The use of service adaptors
across all enterprise applications alleviates the need to modify individual applications
when a new version of the cloud service API is released. Another function of service
adaptors is to perform runtime logging of performance parameters that are used to cal-
culate QoS attributes.

Service Adaptor Library
The Service Adaptor Library contains generic APIs that include methods for various
types of services. For example, a generic payment service interface contains three com-
mon methods: Pay, Refund, and CheckBalance that use generic messages (PaymentRe-
quest, PaymentResponse, RefundRequest, RefundResponse, etc.). Service adaptors in-
herit the generic interface and implement the body of the methods. The Service Adaptor
Library currently contains adaptors for PayPal, eWay, Stripe payment services, and
Dropbox and GoogleDrive storage services. We intent to expand the range of adaptors,
but at the same time we recognize that this may not be a workable solution in situations
where the functionality of services from different cloud providers is significantly dif-
ferent.

4.3 Workflow Engine

The purpose of the workflow engine is to implement simple workflows using a combi-
nation of adaptors and pre-defined sub-workflows (i.e. workflow fragments that imple-
ment a specific function, e.g. the Retry Fault Tolerance reliability strategy). The SCF
workflow engine it is not intended to replicate a fully-functional orchestration engine

74

9

(e.g. BPEL engine). The workflow engine determines the sequence of service invoca-
tions for a given application requirement, and is typically used to configure adaptors to

provide failover function using various fault tolerance strategies. We have demon-
strated, using payment services PayPal and eWay, that relatively simple fault tolerance
strategies such as Retry Fault Tolerance, Recovery Block Fault Tolerance or Dynamic
Sequential Fault Tolerance strategy can lead to significant improvements in application
availability [30]. Figure 3 shows an example of a workflow that uses Dropbox and
Google Drive as alternative storage systems. During normal operation, the data is rep-
licated across both storage systems. The workflow engine switches between the storage
systems to maintain continuity of operation in the event of a single storage system fail-
ure; on recovery, the storage systems are re-synchronized.

Workflow Engine Library
Workflow Engine is a class library developed using the C# programming language. A
workflow can contain a sequence of service adaptors and sub-workflows (pre-config-
ured workflows, e.g. Retry Fault Tolerance strategy for payment services). When exe-
cuting a workflow, adaptors and sub-workflows invoke individual cloud services in a
pre-defined sequence.

4.4 Monitoring Center

The function of the monitoring centre is to monitor the runtime performance of cloud
services and to calculate QoS values that are used for optimizing applications. The
Monitoring Centre provides three basic functions:

• Recording log data: This function collects service log data from enterprise appli-
cations. The Log Collector is invoked by service adaptors or by enterprise applica-
tions and records log data in the monitoring database. At the same time, alerts are
generated that indicate fault conditions and departures from the expected QoS val-
ues.

Fig. 3. Example of a fault tolerant cloud storage workflow

75

10

• QoS calculation: This function calculates the response time and availability of
cloud services using recorded log data. The resulting QoS values can be used for
cloud service selection during the service identification phase.

• Cloud service monitoring: The availability and runtime performance of cloud
services is compared to the expected QoS values as specified in the RFS.

The monitoring centre consists of Monitoring Centre Database, Log Collector, QoS
Analysis and Service Monitor modules. The monitoring centre database is implemented
using Microsoft SQL server and stores log records generated by service invocations.
The log records include the service identifier (ServiceCode) and the application identi-
fier (ApplicationID) of the enterprise application that executed the API call, service
execution start (StartTime) and end times (EndTime), result of the call (i.e. success/fail-
ure) and error codes generated by the adaptor. Service adaptors record the runtime logs
in the monitoring database using the log collector module. Whenever the log collector
detects a service failure, the monitoring centre sends a notification to the relevant sys-
tem administrators. The log data is used to generate hourly, daily and monthly reports
of average availability and response time for individual cloud services. The QoS anal-
ysis module developed using C# programming language is deployed on a AWS EC2
server and configured to execute as a Window Service. The service monitor module is
developed using ASP.Net MVC 5 and is deployed as a client tool for monitoring the
cloud services. The service monitor module displays the runtime QoS information for
individual cloud services and compares these values with the QoS values defined in the
requirements specification.

5 Conclusions

We have argued that traditional systems development methods and tools are not ade-
quate in the context of cloud services, and that a new approach that supports cloud
service consumer lifecycle activities is required. In our earlier work, we have proposed
a Service Consumer System Development Lifecycle (SC-SDLC) that focuses on the
activities of cloud service consumers. In this paper, we describe implementation of the
Service Consumer Framework (SCF) that supports design and runtime activities
throughout the SC-SDLC phases. SCF is a research prototype intended to evaluate the
feasibility of a relatively light-weight solution suitable for SMEs (Small and Medium
size Enterprises) that are in the process of developing enterprise applications that con-
sume externally provided cloud services. We have evaluated the implementation of
several fault tolerant strategies (RFT, RBFT and DSFT) and found that the experi-
mental results obtained using the SCF are consistent with theoretical predictions, indi-
cating significant improvements in service availability when compared to invoking
cloud services directly [30]. Both the SC-SDLC and SCF have been evaluated during
the development of a Hospital Management application for Family Medical Practice
(https://www.vietnammedicalpractice.com/), a leading international primary health
care provider in Vietnam [26]. We have received positive feedback indicating that the
SC-SDLC method guided developers throughout the project and SCF framework pro-
vided a suitable tool for recording information about cloud services and the various SC-

76

11

SDLC phases, leading to an improvement in overall productivity. Additionally, the
cross-provider failover capability implemented using the workflow engine, and moni-
toring center features were regarded as having potential to significantly reduce outages
and improve application availability. Areas of potential future improvement include the
definition of guiding principles and documentation of best practices for each SC-SDLC
phase.

References

1. Rehman, Z.-u., O.K. Hussain, and F.K. Hussain, User-side cloud service
management: State-of-the-art and future directions. Journal of Network and
Computer Applications, 2015. 55: p. 108-122.

2. Arun, S., A. Chandrasekaran, and P. Prakash, CSIS: Cloud Service
Identification System. International Journal of Electrical and Computer
Engineering (IJECE), 2017. 7(1): p. 513-520.

3. Ghamry, A.M., et al. Towards a Public Cloud Services Registry. in
International Conference on Web Information Systems Engineering. 2017.
Springer.

4. Hajlaoui, J.E., et al. QoS Based Framework for Configurable IaaS Cloud
Services Discovery. in Web Services (ICWS), 2017 IEEE International
Conference on. 2017. IEEE.

5. Rotem, R., A. Zelovich, and G. Friedrich, Cloud services discovery and
monitoring, 2016, Google Patents.

6. Yang, K., et al., Model-based service discovery—prototyping experience of an
OSS scenario. BT technology journal, 2006. 24(2): p. 145-150.

7. Zisman, A., et al., Proactive and reactive runtime service discovery: A
framework and its evaluation. IEEE Transactions on Software Engineering,
2013. 39(7): p. 954-974.

8. Ciuffoletti, A., Application level interface for a cloud monitoring service.
Computer Standards & Interfaces, 2016. 46: p. 15-22.

9. Qu, L., et al. Context-aware cloud service selection based on comparison and
aggregation of user subjective assessment and objective performance
assessment. in Web Services (ICWS), 2014 IEEE International Conference on.
2014. IEEE.

10. Qu, L., Y. Wang, and M.A. Orgun. Cloud service selection based on the
aggregation of user feedback and quantitative performance assessment. in
Services computing (scc), 2013 ieee international conference on. 2013. IEEE.

11. Montes, J., et al., GMonE: A complete approach to cloud monitoring. Future
Generation Computer Systems, 2013. 29(8): p. 2026-2040.

12. ProgrammableWeb. ProgrammableWeb - API Directory. 2018 Accessed on:
20.07.2018, Available from: https://www.programmableweb.com/.

13. Feuerlicht, G. and H.T. Tran. Service Consumer Framework. in Proceedings
of the 16th International Conference on Enterprise Information Systems-
Volume 2. 2014. SCITEPRESS-Science and Technology Publications, Lda.

77

12

14. Tran, H.T. and G. Feuerlicht, Service development life cycle for hybrid cloud
environments. Journal of Software, 2016.

15. Joshi, K., et. al. Integrated lifecycle of IT services in a cloud environment. in
Proceedings of The Third International Conference on the Virtual Computing
Initiative (ICVCI 2009), Research Triangle Park, NC. 2009.

16. Joshi, K.P., Y. Yesha, and T. Finin, Automating Cloud Services Life Cycle
through Semantic Technologies. IEEE Transactions on Services Computing,
2014. 7(1): p. 109-122.

17. Field, L., et al., The emi registry: Discovering services in a federated world.
Journal of grid computing, 2014. 12(1): p. 29-40.

18. Mahmood, Z. and S. Saeed, Software engineering frameworks for the cloud
computing paradigm. 2013: Springer.

19. Thönes, J., Microservices. IEEE Software, 2015. 32(1): p. 116-116.
20. Rimal, B.P., et al., Architectural requirements for cloud computing systems:

an enterprise cloud approach. Journal of Grid Computing, 2011. 9(1): p. 3-
26.

21. Brogi, A., et al., SeaClouds: a European project on seamless management of
multi-cloud applications. ACM SIGSOFT Software Engineering Notes, 2014.
39(1): p. 1-4.

22. Brogi, A., et al. SeaClouds: an open reference architecture for multi-cloud
governance. in European Conference on Software Architecture. 2016.
Springer.

23. Kolb, S. and C. Röck, Nucleus-Unified Deployment and Management for
Platform as a Service. 2016.

24. Feuerlicht, G. and H. Thai Tran. Adapting service development life-cycle for
cloud. in Proceedings of the 17th International Conference on Enterprise
Information Systems-Volume 3. 2015. SCITEPRESS-Science and Technology
Publications, Lda.

25. Tran, H.T. and G. Feuerlicht, Service Development Life Cycle for Hybrid
Cloud Environments. JSW, 2016. 11(7): p. 704-711.

26. Tran, H.T., A FRAMEWORK FOR MANAGEMENT OF CLOUD SERVICES,
2017, University of Technology Sydney.

27. SQL Server 2017 on Windows and Linux | Microsoft. Accessed on:
20.07.2018, Available from: https://www.microsoft.com/en-au/sql-
server/sql-server-2017.

28. Anderson, R. ASP.NET MVC 5. 2018 Accessed on: 20.07.2018, Available
from: https://docs.microsoft.com/en-us/aspnet/mvc/mvc5.

29. Windows Communication Foundation. 2018 Accessed on: 20.07.2018,
Available from: https://docs.microsoft.com/en-us/dotnet/framework/wcf/.

30. Tran, H.T. and G. Feuerlicht. Improving reliability of cloud-based
applications. in European Conference on Service-Oriented and Cloud
Computing. 2016. Springer.

78

Decentralized Billing and Subcontracting of
Application Services for Cloud Environment

Providers

Wolf Posdorfer1, Julian Kalinowski1, Heiko Bornholdt1, and Winfried
Lamersdorf1

University of Hamburg, Department of Informatics,
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

Abstract. This paper proposes a decentralized billing and subcontract-
ing system for regional cloud service providers. Based on blockchain tech-
nology, this system allows, on the one hand side, to collectively o↵er ser-
vices in a distributed environment in a strict or ad-hoc federation and,
on the other, to bill each user of such a services individually without a
respective central service. In order to do so, it uses a blockchain-based
transaction process which uses specialized tokens in order to enable a fair
and secure distribution of requested cloud services. It maintains the abil-
ity to achieve consensus by validating the respective blockchain (part).
In result, the proposed system is not bound to a specific technology, but
rather open to any blockchain that allows arbitrary data or modeling of
custom transactions.

Keywords: Blockchain · Cloud Computing · Cloud Environment Provider
· Consensus · Decentralized Ledgers

1 Introduction

Enabled by the increasing need to o✏oad work intensive or space hungry appli-
cations into cloud environments, a few major players have emerged to dominate
the market. This oligarchy is not only dangerous for the end consumer but also
greatly hinders a fair and competitive market for smaller regional providers [7].
A study shows that in 2017 four companies dominate the cloud market with a
combined share of over 50% [16].

By imposing secret migration hindrances through inflexible APIs these major
players are enforcing a vendor lock-in which negatively a↵ects smaller providers,
as a complete stack migration to their service becomes either unfeasible or simply
impossible. Due to their higher market power they can essentially also dictate
the service prices by which smaller providers have to abide to stay somewhat
competitive.

The introduction of Bitcoin in 2008 triggered a new movement in decentral-
ization. Blockchains enable consensus-based replication of data in an untrustwor-
thy environment. Every participating node has the same identical view of all the

79

2 W. Posdorfer, J. Kalinowski, H. Bornholdt, W. Lamersdorf

transactions and their respective order. The underlying database is fully repli-
cated and provides a high reliability. Even though the blockchain was initially
created to serve the single purpose of being a ”cryptocurrency” the technology
can be used for many other applications and business processes.

We propose a scenario in which a multitude of smaller cloud environment
providers can form a federation. Allowing them to bundle their resources into
one virtual cloud provider. By utilizing the blockchain technology we can achieve
a verifiable billing and subcontracting system. This enables all providers to act
as equals and provides fair distribution and payment for the requested cloud
services. The proposed process is generalizable to other use cases whenever they
have a similar system composition and the process can be divided into sub-steps.
The following use case will outline the process in the billing and subcontracting
of cloud services.

Our approach di↵ers from [14] in that it is not locked into Ethereum-VM
compatible blockchains relying solely on smart contracts for application logic.
By defining standard transaction types, which can be run on any blockchain, we
do not impose technological restrictions. This also mitigates the requirements
of Proof-of-Work, allowing for shorter block times and less energy consumption.
Also in contrast to [18] our approach does not require a registry of current
provider prices. Computing hours are not distributed in an auction style system
where cheaper services are always favored, thus no price war is created between
smaller providers.

2 Use Case

This section will provide a use case for a decentralized billing platform to il-
lustrate the benefits it can provide. With a decentralized subcontracting and
billing platform of application services in cloud environments multiple smaller
cloud computing providers can form a federation to act as a single provider, thus
allowing them to be more competitive in todays market. Instead of o↵ering their
services as single entities they can o↵er a combined service that is transparent
for the end user.

Figure 1 shows an exemplary composition of a customer requesting 90 hours
of service and three providers (Provider 1-3), with two subcontractors (Sub3a &
Sub3b).

2.1 Cloud Service Billing

One of the necessities of a decentralized platform where multiple providers share
an incoming workload is the correct billing of the performed computation hours
by each participant. In this scenario we assume that a customer has paid for
a service in advance and that the service will run as long as its being paid
for. Depending on the configuration the fiat money will be evenly distributed
between all the providers connected to the federation. In Figure 1 the customer
requests 90h, which is evenly distributed as 30h for each provider.

80

Decentralized Billing and Subcontracting for Cloud Envs. 3

Customer

request
90h service

Provider3Provider1 Provider2

30h
30h 30h

15h
Sub3a Sub3b

15h 15h

Fig. 1. Service Billing and Subcontracting

2.2 Cloud Service Subcontracting

On the assumption that all connected cloud service providers have limited re-
sources it is quite possible that an even distribution of workload between them
will lead to bottlenecks. By allowing providers to o✏oad a complete or partial
workload to another provider these bottlenecks can be overcome. It even allows
a single provider to act as a proxy to subcontractors, e.g. regional providers.
Figure 1 shows how Provider3 subcontracts to two additional providers Sub3a
and Sub3b.

3 Blockchain

A blockchain is a decentralized data structure, whose internal consistency is
being maintained by reaching consensus over an application state in a network.
The data itself is fully replicated and kept in synchrony over every participating
node [2].

To change the state of the blockchain a transaction has to be submitted.
Each transaction is bundled into a block, which will be chained together by
calculating a hash over the transactions and a hash pointing to the previous
block. Thus e↵ectively chaining each block to its predecessor and creating a
definite order. Figure 2 depicts an exemplary blockchain datastructure showing
three blocks, their linking via the predecessors hash (Prev Hash) and the root
hash of a merkle-tree (Tx Root) containing transactions (Tx0 - Tx3).

3.1 Transaction

The fundamental data structures of the blockchain are transactions and blocks.
The transaction is the smallest data unit being processed and capable of changing

81

4 W. Posdorfer, J. Kalinowski, H. Bornholdt, W. Lamersdorf

Fig. 2. Simplified Blockchain Datastructure

the overall state of the blockchain. Network participants can create them and
propagate them to other nodes through a peer-to-peer network. Depending on
the blockchain technology used transactions can contain di↵erent arbitrary data.
In Bitcoin [13] and other cryptocurrencies they contain info about the sender,
receiver and quantity of currency (simplified). Even function calls are possible,
by using smart contracts or chain code as used in Ethereum [19]. But blockchains
are not limited to the usage of currency or smart contracts. They can also be used
for several other applications like supply chain management, voting or ballots,
crowd funding or to store data in general.

3.2 Block

After a transaction has been published and propagated through the network it
will be bundled into a block. The transactions will be stored and hashed with a
suited algorithm and data structure, usually variants of the SHA-algorithm and
Merkle-Trees. Every block consist of a header containing the predecessors blocks
hash, its own transactions hash (root hash) and depending on the used technol-
ogy other information like timestamps, version, block height, target, nonce or
others.

By using the preceding block hash they are e↵ectively chained together all
the way back to the genesis block. The chaining of blocks creates a traceability
over all transactions and thus also the overall state and state changes of the
blockchain.

3.3 Consensus

The key element behind every blockchain is its consensus algorithm. Through
it the blockchain ensures that the majority of nodes has the same valid shared
state in the long-term. Depending on the used algorithm the majority of nodes
necessary for a valid block typically lies at 51% in chain-based algorithms or + 2

3
in Byzantine Fault Tolerant (BFT)-based algorithms.

82

Decentralized Billing and Subcontracting for Cloud Envs. 5

Chain-based / Append-Based Algorithms In Bitcoin and similar technolo-
gies the consensus algorithm is referred to as Proof-of-Work (PoW) [4, 13, 19].
Its goal is to provide trust through a cryptographic challenge. The challenge
consists of finding a Nonce so that the resulting hash of Nonce and Root-Hash
meets a certain target or di�culty in the form of amount of leading zeros. Ev-
ery node interested in solving the challenge by brute-forcing nonces is called a
Miner, while the process itself is referred to as Mining. Its rather simple to verify
the validity of the produced block by other nodes. The di�culty ensures that
very rarely two di↵erent blocks are propagated through the network at the same
time. Also it ensures that it becomes harder and harder to forge previous blocks
by recalculating hashes with di↵erent nonces.

To create a block a miner selects a set of transactions calculates the root
hash and starts brute-forcing nonces until he finds one that meets the current
di�culty. The di�culty is automatically adjusted by the network in order to keep
the median time between two blocks in roughly the same timespan. With the
increased participation in the cryptographic challenge the amount of computing
power also increases as a direct result of the PoW algorithm and self-adjusting
di�culty.

In contrast to PoW the Proof-of-Stake (PoS) algorithms try to mitigate the
waste of resources [6, 9, 10]. In PoS miners can stake their own coins (or other
values) in order to create blocks more easily. Owning and staking a higher amount
of coins results in a higher likelihood of creating a block. Other algorithms impose
additional requirements on the coins, like the coin-age, to limit the usage of
massive amount of coins.

BFT-based / Propose-Based Algorithms BFT-based algorithms try to
solve the consensus problem by using algorithms that solve the byzantine gen-
erals problem [17]. Usually they are loosely based on the PBFT-algorithm [5]
and 2-Phase-Commit-algorithms [12]. In BFT-based PoS algorithms there is a
certain set of nodes called Validators, who are responsible for consensus. Valida-
tors each take turns in proposing new blocks. This ensures that only one block
for a given height is valid. Unlike in chain-based algorithms where more than
one block can compete to be the next block. This also means that there can be
no forks in the chain. While in chain-based algorithms any number of nodes can
choose to not partake in the block-finding process, in BFT style algorithms a
minimum set of more than 2

3 (or + 2
3) of validators need to be online at any given

time. If there are less than + 2
3 the proposed block will not reach consensus.

3.4 Process

Every blockchain independent of its underlying consensus algorithm follows the
same sequence of steps until a new block which is accepted by other nodes is
appended. Every blockchain participant is running the same client, which either
contains the application layer (like Bitcoin) or an API for a custom application
(like Hyperledger [1]). Every node is linked to a certain amount of other nodes
via a peer-to-peer network which allows the distribution of messages.

83

6 W. Posdorfer, J. Kalinowski, H. Bornholdt, W. Lamersdorf

Once the application layer has created a transaction, which contains data
depending on the use-case/technology, it will be passed to the validation com-
ponent. The transaction validation depends highly on the use case, e.g. checking
if an account balance is su�cient. If it is valid the transaction will be placed into
the mempool and broadcasted to other peers, who repeat this process. Ideally
this ensures that every network participant has the same valid transactions in
its mempool.

Once a node has qualified for creating a block (or proposing) it will select
a number of transactions from the mempool and bundle them into a block.
Depending on certain criteria like transaction age or transaction fees the node
can choose which transactions to include. After forming the block the node will
distribute it to its peers. Upon receiving a block the node has to perform its own
validity checks on the block and transactions within the block, as to not append
an incorrect state to its own blockchain.

4 Problem definition

A classic approach for managing cross-company payments, costs and distribution
of revenue would be to establish and make use of a trusted third party. This
trusted third party keeps track of everything that is relevant to the system, such
as commissions, orders, computing hours and billable hours. This implies that
the third party will get to know details about business relationships between the
companies and, of course, the account balances.

Instead of trusting a third party with this data, it is desirable to keep as
much of the data private as possible and to instead distribute the trust amongst
all parties.

Since in the sketched scenarios, we will have multiple participants, potentially
distrusting each other (dishonesty can lead to personal advantage), a blockchain
solution seems appropriate [20]. It provides data integrity with multiple un-
trusted writers without a trusted third party. Additionally, blockchain transac-
tions can be designed in a way that they support required business processes in
a network of equal partners, where nobody is in control, and yet everybody can
verify the correctness of a process.

The concept of blockchain was created with transparency in mind, which is
why all stored data is available for everyone to validate [13]. The validation in
turn provides the necessary security for a distributed database with multiple
participants who potentially distrust each other. Each participant is given the
opportunity to vote for his own sense of correctness of a given transaction in the
blockchain and to do so, he must have access to the data. This is why validation
is a critical part of a blockchain and it is tightly coupled with transparency.

In the given scenario however, full transparency might not be a valid option
as data are trade secrets and should not be made publicly available. While a
blockchain can be private, not o↵ering public access for anyone who is interested,
transparency of sensible information remains a problem: At least all authorized
participants would be able to read all data, which is bad by itself, especially

84

Decentralized Billing and Subcontracting for Cloud Envs. 7

when direct competitors are involved in the same system. On the other hand
transparency is highly necessary to ensure a working validation and checking for
transaction correctness to guarantee reaching consensus.

5 Approach

The general idea is that, instead of transferring fiat money, trading happens
on the blockchain using tokens. This enables a fast, reliable and secure way for
exchanging a value representation without having to pay fees, enabling partici-
pants to reflect every single transfer of value in the blockchain. Additionally, the
blockchain will provide a decentralized way of clearing, such that the tokens can
be exchanged for fiat money after a given period. This period may be inspired
by the underlying business process and common for all participants. It may also
depend on individual preferences and should not be restricted, however.

5.1 Billing & Subcontracting Scenario

In this scenario, there are two groups of participants, service providers and cus-

tomers. Each provider may maintain business relationships with other providers,
although there will not always be a direct connection between any two of them
in this graph of relationships. Instead, multiple smaller strongly connected sub-
graphs corresponding to individual groups of co-operation are possible.

Figure 3 shows a sample graph of this scenario, where Ci are customers and
Pi are providers. The edges are labeled with the amount of tokens that are being
sent. Dotted edges represent distribution of a previous token, performed by a
provider. Marked in red for each provider is the sum of tokens after all the
transactions are performed, e.g. the net sum for each provider.

The customers (or a central proxy) are the only entities that may issue new
tokens, just like a mint would do with fiat money. Tokens (representing money
or computing hours) are then given to one or more providers, who can in turn
split them and pass them on to other providers.

In this scenario, tokens, once issued, can be distributed and passed from
provider to provider. However, they can never vanish and a provider can only
pass on a token he owns and hasn’t already spent otherwise.

Now, after all tokens have been transferred according to the underlying busi-
ness process, each provider knows his token balance at any time, which corre-
sponds e.g., to computing hours.

In order to exchange his tokens for fiat money, he must be able to generate a
proof showing anyone with access to the blockchain data that he is the rightful
owner of his tokens.

5.2 Transaction Types

Based on the previously introduced use case at least the following three transac-
tion types are necessary to model the business processes. Every Transaction can

85

8 W. Posdorfer, J. Kalinowski, H. Bornholdt, W. Lamersdorf

P22
P1

2

3

P3

5C1

2

1

C2

1
2

P40

2 5

1

Fig. 3. Billing scenario

contain multiple input tokens and multiple output tokens. Input tokens must
be owned by the same participant, while outputs can be assigned to di↵erent
parties. The following transaction types are not unique to a special blockchain,
but can be implemented on any technology that allows custom transactions, like:
Corda [3], Ethereum [19], Hyperledger [1], Tendermint [11] and others. Bitcoin
and its descendants are unsuited because of their strict transaction formats and
limited transaction payload size.

Initialization (INIT) is used to publish newly created tokens into the sys-
tem. Only customers can create new tokens, backing them against fiat currency.
This transaction type does not require any input tokens as the customer is ac-
tively minting them and also contains only one output.

Distribution (DIST) allows a single party to transfer or split their tokens as
required by the business process. It can be used to sell parts of their computing
hours to others.

Payout (POUT) transaction is used to exchange tokens for fiat money with
a customer. It contains multiple input tokens from the same owner and a single
output token towards the customer.

Figure 4 shows an exemplary transaction flow. The customer deposits fiat
money and converts it to 100 Tokens (T). The 100T are then issued to Provider1
using the INIT transaction type. After this transactions has been validated and
finalized in a block, every participant can now confirm that Provider1 owns
100T. When Provider1 is unable to provide the 100T worth of computing hours
he can o✏oad it to another provider. Provider1 distributes his tokens using the
DIST transaction to split his balance between himself and Provider2. Again
after validation and finalization in a block, everyone can confirm that Provider1
and Provider2 both own 50T. Once Provider2 wants to convert his tokens back
into fiat money he issues a POUT transaction, reassigning his 50T back to
the customer. Upon receiving the tokens the customer will issue the respective
amount of fiat money to Provider2 o↵-chain.

86

Decentralized Billing and Subcontracting for Cloud Envs. 9

INIT
100T::Provider_1

Customer

n

Provider1

receives
100T

n+1

DIST
100T

50T::Provider1
50T::Provider2

Provider2

receives
50T

n+2

POUT
50T::Customer

receives payout request
50T::Provider2

convert 50T to fiat money

read transactionwrite transaction off-chain transaction

Blockchain

receives
50T

Fig. 4. Example transaction flow

A minor impracticality in this scenario is the huge reliance on trust. In order
to mitigate wrongdoings by customers a proxy-service will have to be placed in
between to deposit the fiat money and issue the corresponding tokens respec-
tively. This ensures that the customer has actually deposited fiat money and the
providers can later retrieve it.

5.3 Validation and Transparency

As stated in Section 4, validation of transactions is performed by any active par-
ticipant. This requires full access to the transaction data, which, in our scenario,
means every participant can see any tokens being sent between customers (or
proxy) and service providers. But as previously stated full transparency is not
desired for at least the following three aspects:

– Amount of tokens in possession by a single provider should not be revealed.
– O✏oading relations should be hidden from other providers not participating

in the corresponding customer’s job.
– General anonymity is also not ensured as every token assignment must be

directed to a specific provider.

87

10 W. Posdorfer, J. Kalinowski, H. Bornholdt, W. Lamersdorf

A reasonable validation rule, executed by every participant of the system,
would be: ”For any tokens that are distributed and payed-out, is there a valid

incoming token transaction for this provider?” In a fully transparent blockchain
system, this would be trivial to check as everyone has access to the balances and
can take a look at past transactions. However, in a system with private balances
and transaction data, there may be no validation possible at all (thus render-
ing the blockchain approach pointless). This implies that designing a privacy-
protective solution may come with a trade-o↵ between privacy and validation.

The natural approach in favor of privacy would be full encryption of the
transaction data. All data would be private and visible for the sender and recip-
ient only. Obviously, nobody may validate this data except for the sender and
receiver, respectively.

6 Future Work and Conclusion

The proposed blockchain based solution shows a generalizable method to pro-
vide a decentralized billing and subcontracting process for cloud environment
providers. It can be adapted to a multitude of other business processes that
share the same characteristics. Whenever a process is started from a single en-
tity and can be divided into measurable subparts the proposed solution is a
suitable candidate.

Another exemplary use case can be the execution of distributed workflows.
Where an orchestrator (customer) distributes actions of the workflow to services
(provider), which in turn can divide the actions into subactions and redistribute
them to other services all in a traceable and verifiable manner on the blockchain.

As transaction transparency and transaction validation are closely reliant on
each other new methods for privacy protection must be established. As full data
encryption is not feasible, because it breaks validation, other steps must be taken
when specific use cases highly require data protection.

One of the measures to take to ensure validation is the usage of homomorphic
encryption [8]. Homomorphic encryption allows for token values to be encrypted
while still maintaining the ability to construct sums and verify input and output
values.

When introducing encryption the encrypted values or token sums must also
remain unforgeable. Thus a binding value must be chosen in the form of a veri-
fiable secret. A commitment solves these issues as it firstly hides the input value
and secondly is also binding [15].

References

1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a
distributed operating system for permissioned blockchains. In: Proceedings of the
Thirteenth EuroSys Conference. p. 30. ACM (2018)

88

Decentralized Billing and Subcontracting for Cloud Envs. 11

2. Antonopoulos, A.M.: Mastering Bitcoin: unlocking digital cryptocurrencies.
O’Reilly Media, Inc. (2014)

3. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: An introduction. R3 CEV,
August (2016)

4. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

5. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99,
pp. 173–186 (1999)

6. David, B.M., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake protocol. IACR Cryptology ePrint Archive
2017, 573 (2017)

7. Feng, Y., Li, B., Li, B.: Price competition in an oligopoly market with multiple
iaas cloud providers. IEEE Transactions on Computers 63(1), 59–73 (2014)

8. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20. Stanford
University Stanford (2009)

9. Jain, A., Arora, S., Shukla, Y., Patil, T., Sawant-Patil, S.: Proof of stake with
casper the friendly finality gadget protocol for fair validation consensus in ethereum
(2018)

10. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-
published paper, August 19 (2012)

11. Kwon, J.: Tendermint: Consensus without mining. Draft v. 0.6, fall (2014)
12. Lampson, B., Sturgis, H.E.: Crash recovery in a distributed data storage system

(1979)
13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
14. Neidhardt, N., Köhler, C., Nüttgens, M.: Cloud service billing and service level

agreement monitoring based on blockchain. In: EMISA. pp. 65–69 (2018)
15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Crypto. vol. 91, pp. 129–140. Springer (1991)
16. Synergy Research Group: The leading cloud providers continue to run away with

the market (2017), https://www.srgresearch.com/articles/leading-cloud-providers-
continue-run-away-market

17. Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-work vs. bft repli-
cation. In: International Workshop on Open Problems in Network Security. pp.
112–125. Springer (2015)

18. Wang, H., Shi, P., Zhang, Y.: Jointcloud: A cross-cloud cooperation architecture
for integrated internet service customization. In: Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on. pp. 1846–1855. IEEE
(2017)

19. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–39 (2018)

20. Wst, K., Gervais, A.: Do you need a blockchain? Cryptology ePrint Archive, Report
2017/375 (2017), https://eprint.iacr.org/2017/375

89

May Contain Nuts: The Case for API Labels

Cesare Pautasso1 and Erik Wilde2

1 Software Institute, Faculty of Informatics, USI, Lugano, Switzerland
2 CA Technologies, Zürich, Switzerland

Abstract. As APIs proliferate, managing the constantly growing and
evolving API landscapes inside and across organizations becomes a chal-
lenge. Part of the management challenge is for APIs to be able to describe
themselves, so that users and tooling can use descriptions for finding and
filtering APIs. A standardized labeling scheme can help to cover some
of the cases where API self-description allows API landscapes to become
more usable and scalable. In this paper we present the vision for stan-
dardized API labels, which summarize and represent critical aspects of
APIs. These aspect allow consumers to more easily become aware of the
kind of dependency they are going to establish with the service provider
when choosing to use them. API labels not only summarize critical cou-
pling factors, but also can include claims that require to be validated by
trusted third parties.

Keywords: First keyword · Second keyword · Another keyword.

1 Introduction

APIs are the only visible parts of services in API-based service landscapes. The
technical interface aspect of APIs has been widely discussed with description
languages such as WSDL, RAML, and Swagger/OpenAPI. The non-functional
aspects are harder to formalize (e.g., see the survey by Garćıa et al. [8]) but
can also benefit from a framework in which information can be represented and
used.

The idea of “API Labels” is equivalent to that of standardized labeling sys-
tems in other product spaces, for example for food, for device energy consump-
tion, or for movie/games audience ratings. In these scenarios, labels enable con-
sumers to understand a few key (and often safety-critical) aspects of the product.
This framework is not intended to be a complete and exhaustive description of
the product. Instead, it focuses on areas that are important and helpful to make
an initial product selection. The assumption is that the information found on
the label can be trusted, so that consumers can make decisions based on labels
which are correct and do not contain fraudulent information.

In the API space, numerous standards and best practices have evolved how
APIs can be formally described for machine processing and/or documented for
human consumption [14] (e.g., WSDL [4], WADL [9], RESTdesc[24], hRESTS [12],
RADL [19], RAML, Swagger/OpenAPI [22], SLAF [10], RSLA [21], SLAC [23]

90

2 C. Pautasso and E. Wilde

just to mention a few). However, there still is some uncertainty how to best
combine and summarize these, and how to use them so that API description,
documentation, and labeling can be combined. This paper proposes the API
Labels Framework (AFL) to introduce API labels as a synthesis of existing API
descriptions combined with additional metadata which can help customers as-
sess several practical qualities of APIs and their providers and thus be useful
to reduce the e↵ort required to determine whether an API can be worthy of
consideration.

The main motivation for labeling APIs is probably not so much about a
way to enable providers to put marketing labels on their APIs nor is it a way
to summarize information that is already present in existing formal API de-
scriptions. Instead, it is about providing assurances for API consumers about
crucial characteristics of the service behind the API that may not be visible on
its surface.

The rest of this paper is structured as follows. In Sec. 2 we present general
background on labeling and related work which has inspired the current paper. In
Sec. 3 we apply the concept of labeling to APIs and discuss how to use OpenAPI
Link Objects and Home Documents to make API labels easy to find. We discuss
the issue of how to establish trust for API labels in Sec. 4 and then introduce
di↵erent label types in Sec. 5. The following Sec. 6 provides a non-exaustive set
of label type examples. The problem of discovering labels and ensuring that they
can evolve over time are identified in Sec. 7.2. Finally we draw some conclusions
in Sec. 8 and outline possible directions for future work in Sec. 9.

2 Background and Related Work

Labeling helps to identify, describe, assess and promote products [13]. Branding
and labeling contribute to di↵erentiate competing products by assuring the con-
sumer of a guaranteed level of quality or by restoring consumer’s confidence after
some negative publicity leading to a loss of reputation. More specifically, food
labeling has also been used to educate consumers on diet and health issues [5].
Labeling can thus be used as a marketing tool [1] by providers or as a provider
selection tool by consumers [2].

This work is inspired by previous work on designing simplified privacy labels
of Web sites [11] based on the now discontinued P3P standard [7]. It shares
similar goals to provide a combined overview over a number of “API Facts”.
However, one important di↵erence is that P3P was a single-purpose specification
intended to standardize everything required for embedding privacy labels. It thus
had fixed methods to locate privacy policies (four variations of discovering the
policy resource), fixed ways how those were represented (using an XML-based
vocabulary), and a fixed set of acceptable values (also encoded into the XML
vocabulary) to be used in these policies.

The work presented in this paper is bigger in scope, and on the framework
level. As such, we do not authoritatively prescribe any of the aspects that P3P
was defining. Instead, we are assuming that with organizations and user groups

91

May Contain Nuts: The Case for API Labels 3

using API labels, certain patterns will emerge, and will be used inside these
communities. We can easily envision a future where our framework is used as a
foundation to define a more concrete set of requirements, but this is out of scope
for this paper, and most likely would benefit substantially from initial usage and
feedback of the API label framework presented here.

3 Labeling APIs

The idea of API labels is that they apply not just to individual resources, but
to a complete API. Many APIs will provide access to a large set of resources.
It depends on the API style how APIs and individual resources relate [18]. In
the most popular styles for APIs today, which are HTTP-based, the API is
established as a set of resources with distinct URI identities, meaning that the
API is a set of (potentially many) resources. One exception to this are RPC-
oriented API styles (such as the ones using SOAP, grpc or GraphQL) which
“tunnel” all API interactions through a single “API endpoint”. In that latter
case, there is no such thing as a “set of HTTP-oriented resources establishing
the API”, but since we are mostly concerned with today’s popular HTTP-based
styles, the question of the scope of API labels remains relevant.

Applications consuming APIs are coupled to them, and the choice of API
to be consumed introduces critical dependencies for consumers [17]. Consumers
need to be made aware about non-functional aspects, concerning the short-term
availability and long-term evolution of API resources [15]. Likewise, when a
resource is made available by a di↵erent API, di↵erent terms of service may
apply to its usage.

From the consumer point of view, the concept of an “API boundary” can
seem arbitrary or irrelevant, or both. API consumers most importantly want to
implement applications. To do so, they need to discover, select and invoke one or
more APIs. However, even when from the strict application logic point of view
the “boundary” between APIs may not matter (applications will simply traverse
resources either driven by application logic or by hypermedia links), it still may
be relevant for non-functional aspects, such as when each API resource is made
available by a di↵erent provider and therefore di↵erent terms of service apply to
its usage.

Generally speaking, the Web model is that applications use various resources
to accomplish their goals, and these resources often will be provided by more
than one API. In this case the question is how it is possible to get the API
labels for every resource, if applications want to do so. What is the scope of API
labels, and how is it possible, starting from any resource of an API, to find its
API labels? And how can an application know when traversing resources that it
traverses an “API boundary”? The Web (and HTTP-based URIs) has no built-
in notion to indicate “API boundaries”, so the question is how to establish such
a model.

It seems wasteful to always include all API label information in all resources,
given that in many cases, applications will not need this information and thus it

92

4 C. Pautasso and E. Wilde

would make API responses unnecessarily large. However, there are approaches
how this can be done in more e�cient ways, and currently there are two solutions
available (OpenAPI Link Objects and Home Documents). It is important to keep
in mind that it is up to an API designer to decide if and how they will use these
techniques to make labels easy to find.

3.1 OpenAPI Link Objects

The API description language OpenAPI (formerly known as Swagger) has added
the concept of a link object with its first major release under the new name,
version 3.0. Essentially, link objects are links that are defined in the OpenAPI
description, and then can be considered to be applicable to specific resources
of the API. In essence, this creates a shortcut mechanism where these links are
factored out from actual API responses, and instead become part of the API
description.

It is important to keep in mind that because of this design, the actual links in
the OpenAPI link object never show up in the API itself; instead they are only
part of the OpenAPI description. This design allows OpenAPI consumers to use
these links without producing any runtime overhead, but it makes these links
“invisible” for anybody not using the OpenAPI description and interpreting its
link objects.

This design of OpenAPI thus can be seen as e↵ective optimization, because it
creates no runtime overhead. On the other hand, it limits self-descriptiveness and
introduces substantial coupling by making the links in link objects exclusively
visible to clients knowing and using the OpenAPI description.

For this reason, we believe that in environments where this coupling has been
introduced already, OpenAPI link objects may be a good solution. This can be
any environment where the assumption is that API consumers always know the
OpenAPI descriptions of the APIs they are consuming. This may be a decision
that is made in certain organizations or communities, but cannot be considered
a design that is used in unconstrained API landscape.

In unconstrained API landscapes, it seems that the coupling introduced by
making the knowledge and usage of all OpenAPI descriptions mandatory is
substantial, and may be counterproductive to the self-describing and loosely
coupled consumption of APIs. If the design goal is to focus on self-description
and loose coupling, then OpenAPI link objects probably are not the best choice,
and instead the approach of home documents may be the better one.

3.2 Home Documents

An alternative model to that of OpenAPI is established by the mechanism of
home documents [16]. The idea of home documents is that there is a “general
starting point” for an API. This starting point can provide a variety of infor-
mation about the API, including information about its API labels. The home
document then can be linked to from API resources, and there is a specific home
link relation that is established as part of the home document model.

93

May Contain Nuts: The Case for API Labels 5

Using this model, all resources of an API can provide one additional link,
which is to the API home document. The home document then becomes the
starting point for accessing any information about the API, including an API’s
labels. This model means that there is an overhead of one link per resource.
However, given modern mechanisms such as HTTP/2.0 header compression, it
seems that this overhead is acceptable in the majority of cases, even if that link
is not so much a functional part of the API itself, but instead provides access to
metadata about the API.

One of the advantages of the idea of home documents and providing home
links for resources is that this makes the API (or rather its resources) truly self-
describing: Consumers do not need any additional information to find and use
the information about an API’s home document.

One downside to this model is that home documents are not yet a stable
standard used across many APIs. The draft has been around for a while and has
evolved over time, but it is not guaranteed that it will become a stable stan-
dard. One other hand, since this work is rooted in general Web architecture,
even without the specification being a stable standard already using it is ac-
ceptable, and in fact this is how many IETF standards are conceived: drafts are
proposed, already adopted by some, and the eventual standard then is informed
by gathering feedback from those who already have gained experience with it.

4 Trusting API Descriptions and Documentations

API labels provide a human-readable format to summarize API descriptions
including hyperlinks to relevant documentation and specifications. API labels
are also meant to be machine processable to provide the basis for automated
support for API landscape visualization and filtering capabilities.

One example for this are the link relation types for Web services [26]. These
could be readily used as API labels (if they are made discoverable through the
general API label mechanism). Some of the resources are likely just human-
readable (for example API documentation provided as PDF), while other re-
sources might be machine-readable and to some extent even machine-understandable
(for example API description provided as OpenAPI which can be used by testing
and documentation generation tools).

API labels are not meant to provide a complete specification of APIs and
replace existing languages and service discovery tools. Instead, they are designed
to include information that is currently not found in API descriptions as written
by service providers, because this information may include claims that need to
be verified by trusted third parties. Additionally, the summary described in the
label can lead to more detailed original sources that can be used to confirm the
validity of the summarized information.

While it is in a provider’s best interest to provide a correct representation
of its APIs functional characteristics (operation structure, data representation
formats, suggested interaction conversations) so that clients may easily consume
the API appropriately, questionable providers may be tempted to misrepresent

94

6 C. Pautasso and E. Wilde

some of the Quality of Service levels they may be capable of guaranteeing. Hence
labeling APIs could provide the necessary means to certify and validate the
provided API metadata information complementing other means to establish
and assess the reputation of the API provider [3]. This is a rather challenging
task that would require to deal with a number of non-trivial issues.

For example, how would consumers establish trust with a given API label
certification authority? Is one centralized authority enough or should there be
multiple ones taking into advantage the decentralized nature of the Web [6]?
If multiple parties can certify the same API, how should consumers deal with
conflicting labels? How to ensure labels can be certified in an economically sus-
tainable way (are consumers willing to pay to get verified labels?) without leading
to corruption (providers are willing to pay to get positive labels)? How would
the authority actually verify the QoS claims of the provider? How to avoid that
a provider obtains good results when undergoing a certification benchmark but
poor performance during normal operations when servicing ordinary customer
requests? How to ensure API labels are not tampered with? Should labels be
signed by reference or by value?

While it is out of scope of this paper to deal with all of these issues, we believe
some form of delegation where APIs reference labels via links to label resources
hosted by third parties will be one of the key mechanisms to enable trust into
certified API labels. This way, even if the label value itself is not provided by the
API, but by using the delegation mechanism, we could still make it discoverable
through the API.

5 Label Types

In order to be understandable, labels must follow a framework of well-defined
types that can be “read” as API labels. Some of these may already exist as
evolving or existing standards. The link relations for Web services discussed in
the previous section can be considered potential API labels that are defined in
an evolving standard. An example for an existing standard is the license link
relation defined in RFC 4946 [20], which is meant to convey the license attached
to resources made available through a service.

A label type identifies the kind of label information that is represented by
attaching a label of this type. In principle, there are three di↵erent ways of how
label types can communicate label information to consumers:

– By Value: If the label is simply an identifier, then the meaning of the
label is communicated by the label value itself. The question then is what the
permissible value space is (i.e., which values can be used to safely communicate a
well-defined meaning between label creators and label readers). The value space
can be fixed and defined by enumerating the values associated with the label
type, or it can be defined in a way so that it can evolve. This second style of
managing an evolving value space often is implementing through registries [25],
which e↵ectively decouples the definition of the label type and the definition of
its value space.

95

May Contain Nuts: The Case for API Labels 7

– By Format: If the label is intended to communicate its meaning by ref-
erence, then it will link to a resource that represents the label’s meaning. It is
possible for label types to require that the format is always the same, and must
be used when using that label. This is what P3P (the example mentioned earlier)
did, by defining and requiring that P3P policies always must be represented by
the defined format. This approach allows to build automation that can validate
and interpret labels, by depending on the fact that there is one format that must
be used for a given label type.

– By Link: It is also possible to not require the format being used. This
is the most webby and open-ended approach, where a label links to a resource
representing the label’s value, but the link does not pre-determine the format
of the linked resource. This approach has the advantage that label value rep-
resentations can evolve and new ones can be added when required, but it has
the disadvantage that there is no a priori interoperability of label producers and
label consumers.

Returning to the examples given above, it becomes obvious that the exist-
ing mechanisms discussed so far that could be considered to be used as API
labels already use di↵erent approaches from this spectrum. The link relation for
licenses [20] is based on the assumption that a license is identified by value, thus
requiring licenses to be identified by shared URI identifiers. P3P [7] defines its
own format that has to be used for representing P3P labels. The link relations for
Web services [26] identify information by link, and do not constrain the format
that has to be used with those link relations.

6 API Label Examples

In this section we collect a preliminary list of API label types and values, char-
acterizing several technical and non-technical concepts [27] which are meant to
assist consumers during their API selection process. We have compiled this list
based on the relevant literature, our experience, including feedback from our
industry contacts.

– Invocation Style: This label defines on a technical level which kind style is
required for clients to invoke the API. We distinguish between Synchronous RPC,
Synchronous Callbacks, Asynchronous Events/Messages, REST, and Streaming.

– Protocol Interoperability: Which are the interaction protocols supported
by the API? Which versions of the protocols? Examples values: SOAP, HTTP,
GraphQL

– Privacy: Where is the data managed by the API stored? While clients do
not care whether their data is stored in SQL or XML, they do worry whether their
data is located in a di↵erent country and thus subject to di↵erent regulations.

– Service Level Agreement: Does an SLA explicitly exist? If it does: how
is it enforced? are there penalties for violations? can it be negotiated? This
helps to roughly distinguish between APIs without SLAs from APIs having an
explicitly (formally or informally) defined SLA, which can be further annotated
to highlight whether service providers make serious e↵orts to stand behind their

96

8 C. Pautasso and E. Wilde

promises and whether they are willing to adapt to client needs by negotiating the
terms of the agreement with them as opposed to o↵ering a number of predefined
usage plans.

– Pricing: Also related to SLA, clients want to know: whether there a free
price plan? Can the API paid price plans be considered as cheap, reasonable, or
expensive? This label needs to be computed based on the client expectations or
by comparing with similar APIs.

– Availability Track Record: Does the API provider explicitly promises high
availability? How well does the promise (e.g., “five nines” or 99.999%) matches
the reality? Is the API provider’s availability improving or getting worse? Ad-
ditionally, clients need to know how to set their timeouts before giving up and
determining that the API is no longer available. The Availability Track Record
should label APIs for which such information is explicitly found in the corre-
sponding SLA.

– Maturity/Stability: The Maturity label should provide a metric to deter-
mine whether the API has reached flying altitude and can be considered as ma-
ture enough, i.e., it is likely to be feature complete and stable during the entire
lifecycle of clients consuming it. This can be inferred from versioning metadata,
or some kind of metric summarizing the API version history (e.g., the number
of changes over time, or how many alternative versions of the same API are
supported in parallel by the provider). Conversely, if APIs are not yet mature
and unstable, clients would benefit from knowing how much time they have to
react to breaking API changes. Di↵erent providers may allow di↵erent amounts
of time between announcing changes and carrying them out. In a similar way,
as APIs eventually disappear, does the provider support some notion of sunset
metadata? Are API features first deprecated and eventually retired, or does the
API provider simply remove features without any warning?

– Popularity: How many clients are using the API? Is this the mostly used
API within the ecosystem/architecture? is it in the top 10 APIs based on daily
tra�c? or only very few clients rarely invoke it?

– Alternative Providers: Are there alternative and competing providers for
the API? or there exists only one monopolistic provider? How easy is it to replace
the service provider of the API? How easy is it to find a replacement API within
minimal di↵erences from the current one?

Additional label types describing energy consumption, sustainability, quality
management (e.g. ISO 9001 compliance) or trust certificates are possible.

7 A Recipe for API Labels

As mentioned already, the exact way of how to implement labels is not yet
standardized. In this paper, we discuss the parts that need to be in place to use
API labels, but we do not prescribe one single correct way. In order to summarize
these parts, and to give organizations looking at using API labels a useful starting
point, we are summarizing the required parts in an “API label landscape”. We
also recommend specific ways of solving these individual issues. In particular,

97

May Contain Nuts: The Case for API Labels 9

Section 7.1 provides methods to make labels findable, and Section 7.2 provides
methods to manage the types and the values of those findable labels so that the
set of labels used in an API landscape can organically grow over time.

7.1 Findable Labels

In order for API labels to be usable and useful, they must be findable. One pos-
sibility is to manage them separate from APIs themselves, but this approach is
likely to let APIs and their labels go out of sync easily. A more robust approach
is to make API labels parts of APIs themselves, which allows labels to be man-
aged and updated by the APIs themselves, and also allows labels to be found
and accessed by those that have access to these APIs.

Using such an approach, making API labels findable amounts to allowing
them to be accessed through the API. For this to be consistent across APIs,
there need to be conventions that are used across APIs to find and access labels.
What these conventions look like, depends on the style and technology of APIs.
For HTTP APIs that are based on the resource-oriented or the hypermedia style
of APIs this amount to providing resources that represent label information.

In terms of currently available practices, using home documents as described
in Section 3.2 works well, if it is acceptable as a general API guideline to require
APIs to provide home documents. If it is, labels still need to be made discov-
erable from that home document. We are suggesting to represent labels in a
way that represents a set of labels, and that has the ability to “delegate” label
representation to third parties, so that that scenarios like the ones discussed in
Section 4 can be implemented.

7.2 Extensible Label Sets

Once there is a defined way how labels can be found for APIs and, as suggested
above, through the APIs themselves, then the next question is what types of
labels can be found (Section 6 suggests a starting set of label types). It is likely
that the set of label types is going to evolve over time, so the question is not
only which types of labels to support, but also how to manage the continuous
evolution of that set of types.

A flexible way to manage label sets is to use registries [25], as mentioned in
Section 5. Once the necessary registry infrastructure is in place, registries need to
be combined with policies so that values in the registry have a well-defined way
how they evolve. For API label types and their corresponding values, a rather
standard set of policies for registry management would most likely work well:

– Initial Set Any API label landscape will start with a set of initial label
types. This set should be the “minimal viable product”, meaning that it is more
important to get API label use o↵ the ground, than to have the perfectly curated
set of label types. Likewise, the initial values of each label type will be chosen
among values with a fixed and well-understood meaning.

98

10 C. Pautasso and E. Wilde

– Additions after community review and consensus: The label landscape will
continually grow, with new label types and values being added as required. Addi-
tional label types should have some motivation documented, and that motivation
should be the starting point for a community review. If there is su�cient con-
sensus to add the type, it is added to the set of existing label types. In a similar
way, new values should undergo some review so that they broadly follow the
general idea of the label type, and ideally do not created overlaps or conflicts
with existing entries.

– Semantics of registered label types and values do not change: API labels
should always mean the same, so the meaning of an API label type should never
be changed. Once it has been registered, users will start using it and will depend
on its registered meaning, so changing its meaning would be a breaking change
for all uses of the API label. One exception to this rule is that it is possible to
clarify and correct the meaning of a registered label value, but this should be
used very carefully because any change being made to a label values meaning
should retroactively invalidate or change the way how a label value has been
used before.

– Registered label types and values cannot be removed, but can be retired:
Label types should never change meaning, but their usage may not be supported
or required anymore. If that is the case, there should be a mechanism how a label
type or value can be marked as deprecated in the registry, so that it becomes clear
that this label may appear, but that it should not be actively used anymore. As
opposed to removing it from the registry, the semantics of the deprecated value
remain registered and available, allowing everybody to still look up what an
assigned label type or value means. However, the status also makes it clear that
this value should not be used for new labels.

While this recipe for managing label types and values is not the only possible
way, it ensures that label management can evolve, and does not su↵er from
breaking changes along the way. This is thanks to the combination of stable
semantics, and the policies on how to evolve them. Because this is a general
pattern how to achieve robust extensibility, a very similar recipe can be used to
manage the evolution of the value space of individual labels.

8 Conclusion

In this position paper we have made the case for API Labels. Labeling APIs is
driven by the real world needs of consumers to quickly assess the main quality
attributes of an API and its provider, which are likely to a↵ect the consumer
application built using the API in the long term. We have proposed the API

Label Framework (ALF): a framework based on the “API the APIs” principle to
make API self-descriptive by attaching API labels as metadata to API resources.
We also included an initial proposal for a number of possible label types. Some
of these can be automatically derived by summarizing information found in
API descriptions written by the providers. Other require some external input
by a third-party authority. For API Labels to become a trusted mechanism

99

May Contain Nuts: The Case for API Labels 11

for API annotation, comparison and selection, there needs to be a verification
and validation process which guarantees that consumers can trust the “facts”
mentioned in the label.

9 Future Work

As part of future work we plan to make labels self-describing by creating identi-
fiers for each label type you want to support and make label values self-describing
by clearly defining the value space for each label. Tooling will be required to
automatically extract labels and validate the consistency of labels with the cor-
responding detailed API descriptions so that API owners can easily test their
labels and see how they are working. Once a number of machine-readable API
labels become available, tooling to crawl labels will make it easier for developers
to explore the “label graph” of the labels that one or more API providers define.

Also policies around label changes will need to be established so that it is
well-defined when and how to expect label updates and how these are communi-
cated by tracking the history of a given API. Given that label types and values
themselves will likely evolve, it will be important to determine how the set of
possible known values is defined and where can the identified label types can be
reused from. Registries [25] for API labels and possibly their value spaces are
like to play a key role for addressing this challenge.

References

1. Atkinson, L., Rosenthal, S.: Signaling the green sell: the influence of eco-label
source, argument specificity, and product involvement on consumer trust. Journal
of Advertising 43(1), 33–45 (2014)

2. Becker, T.: To what extent are consumer requirements met by public quality pol-
icy? In: Quality policy and consumer behaviour in the European Union., pp. 247–
266. Wissenschaftsverlag Vauk Kiel KG (2000)

3. Bidgoly, A.J., Ladani, B.T.: Benchmarking reputation systems: A quantitative
verification approach. Computers in Human Behavior 57, 274 – 291 (2016).
https://doi.org/https://doi.org/10.1016/j.chb.2015.12.024

4. Booth, D., Liu, C.K.: Web Services Description Language (WSDL) Version 2.0 Part
0: Primer. World Wide Web Consortium, Recommendation REC-wsdl20-primer-
20070626 (June 2007)

5. Caswell, J.A., Mojduszka, E.M.: Using informational labeling to influence the mar-
ket for quality in food products. American Journal of Agricultural Economics
78(5), 1248–1253 (1996)

6. Chu, Y.H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: REFEREE:
Trust management for Web applications. Computer Networks and ISDN systems
29(8-13), 953–964 (1997)

7. Cranor, L.F.: Web Privacy with P3P. O’Reilly & Associates, Sebastopol, California
(September 2002)

8. Garćıa, J.M., Fernandez, P., Pedrinaci, C., Resinas, M., Cardoso, J.S.,
Cortés, A.R.: Modeling Service Level Agreements with Linked USDL
Agreement. IEEE Trans. Services Computing 10(1), 52–65 (2017).
https://doi.org/10.1109/TSC.2016.2593925

100

12 C. Pautasso and E. Wilde

9. Hadley, M.: Web Application Description Language (WADL). Tech. Rep. TR-2006-
153, Sun Microsystems (April 2006)

10. Kearney, K.T., Torelli, F., Kotsokalis, C.: SLAF: An abstract syntax for Service
Level Agreements. In: Proc. of the 11th IEEE/ACM International Conference on
Grid Computing (GRID). pp. 217–224 (2010)

11. Kelley, P.G., Bresee, J., Cranor, L.F., Reeder, R.W.: A nutrition label for privacy.
In: Proceedings of the 5th Symposium on Usable Privacy and Security. p. 4. ACM
(2009)

12. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML Microformat for De-
scribing RESTful Web Services. In: 2008 IEEE/WIC/ACM International Con-
ference on Web Intelligence. pp. 619–625. Sydney, Australia (December 2008).
https://doi.org/10.1109/WIIAT.2008.469

13. Kotler, P.: Marketing management: analysis, planning, implementation and con-
trol. Prentice Hall (1997)

14. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use docu-
mentation: the state of the practice. IEEE Software 20(6), 35–39 (Nov 2003).
https://doi.org/10.1109/MS.2003.1241364

15. Li, J., Xiong, Y., Liu, X., Zhang, L.: How Does Web Service API Evolution A↵ect
Clients? In: 2013 IEEE 20th International Conference on Web Services(ICWS).
pp. 300–307 (June 2013)

16. Nottingham, M.: Home Documents for HTTP APIs. Internet Draft draft-
nottingham-json-home-06 (August 2017)

17. Pautasso, C., Wilde, E.: Why is the Web Loosely Coupled? A Multi-Faceted Metric
for Service Design. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) 18th
International World Wide Web Conference. pp. 911–920. ACM Press, Madrid,
Spain (April 2009)

18. Pautasso, C., Zimmermann, O.: The Web as a Software Connector: Integration
Resting on Linked Resources. IEEE Software 35(1), 93–98 (2018)

19. Robie, J., Sinnema, R., Wilde, E.: RADL: RESTful API Description Language. In:
Kosek, J. (ed.) XML Prague 2014. pp. 181–209. Prague, Czech Republic (February
2014)

20. Snell, J.M.: Atom License Extension. Internet RFC 4946 (July 2007)
21. Tata, S., Mohamed, M., Sakairi, T., Mandagere, N., Anya, O., Ludwig, H.: RSLA:

A service level agreement language for cloud services. In: Proc. of the 9th Interna-
tional Conference on Cloud Computing (CLOUD2016). pp. 415–422. IEEE (2016).
https://doi.org/10.1109/CLOUD.2016.60

22. The Open API Initiative: OAI. https://openapis.org (2016), https://openapis.org/
23. Uriarte, R.B., Tiezzi, F., De Nicola, R.: SLAC: A formal service-level-agreement

language for cloud computing. In: UCC. pp. 419–426. IEEE (December 2014)
24. Verborgh, R., Steiner, T., Deursen, D.V., Coppens, S., Vallés, J.G., de Walle,

R.V.: Functional Descriptions as the Bridge between Hypermedia APIs and the
Semantic Web. In: Alarcón, R., Pautasso, C., Wilde, E. (eds.) Third International
Workshop on RESTful Design (WS-REST 2012). pp. 33–40. Lyon, France (April
2012). https://doi.org/10.1145/2307819.2307828

25. Wilde, E.: The Use of Registries. Internet Draft draft-wilde-registries-01 (February
2016)

26. Wilde, E.: Link Relation Types for Web Services. Internet Draft draft-wilde-
service-link-rel-06 (August 2018)

27. Wilde, E.: Surfing the API Web: Web Concepts. In: 27th International World Wide
Web Conference. ACM Press, Lyon, France (April 2018)

101

On Limitations of Abstraction-Based

Deadlock-Analysis of Service-Oriented Systems

Mandy Weißbach and Wolf Zimmermann

Martin Luther University Halle-Wittenberg, Institute of Computer Science,
Von-Seckendor↵-Platz 1, 06120 Halle, Germany

{mandy.weissbach,wolf.zimmermann}@informatik.uni-halle.de

Abstract. Deadlock-analysis of concurrent service-oriented systems is
often done by P/T-net-based approaches. We show that there is a con-
current service-oriented system with synchronous (stack behavior) and
asynchronous procedure (concurrent behavior) calls with a deadlock that
is not discovered by classical P/T-net-based approaches. Hence, P/T-net-
based approaches lead to false statements on absence of deadlocks. We
propose an approach based on Mayr’s Process Rewrite Systems to model
both, concurrent and stack behavior while the deadlock problem remains
decidable.

Keywords: Deadlock-Analysis; Concurrency; Petri Net Abstraction; Service-
Oriented System

1 Introduction

Van der Aalst’s workflow nets is a P/T(place/transition)-net-based approach
for checking soundness properties, i.e., the absence of deadlocks or livelocks
of business process workflows and their (de)composition [10]. This approach is
refinement-based, i.e., the workflow nets are refined to an implementation. The
approach might be well-suited for an initial implementation but it is well-known
that maintaining the consistency of the model and the corresponding implemen-
tation requires disciplined programmers. Hence, it is not uncommon that the
model for a service and its implementation becomes more and more inconsistent.
Furthermore, there exists certainly many services that are not implemented as a
refinement of workflow nets. This does not mean that the approach using work-
flow nets as a tool for checking soundness property is superfluous, if it is used
in the other direction: abstract an implementation to P/T-net and check the
abstracted P/T-net for absence of deadlocks.

Since P/T-nets are unable to model stack behavior, any P/T-net-based ab-
straction of an implementation including stack behavior (recursive procedure
calls) can not capture this behavior. In [13] it was shown that finite-state ap-
proaches for protocol conformance checking may lead to false positives if recur-
sion is allowed, i.e., the approach reports the absence of protocol conformance
violations while the real behavior produces one. In [5] we have shown that using
Mayr’s Process Rewrite Systems (PRSs), the concurrent and recursive behavior

102

can be modeled adequately, i.e., false positives can not occur. [1] shows that
this PRS-based abstraction can also be made compositional and is therefore as
appropriate for service compositions as P/T-nets. In this paper we answer the
question whether a similar situation occurs for deadlock analysis using workflow
nets (and composing them to P/T-nets).

It turns out that we have a similar phenomenon as for protocol conformance
checking:

There is a service-oriented system S with a deadlock where the abstrac-
tion of its services to workflow nets and their composition leads to a
deadlock-free P/T-net.

Thus, if van der Aalst’s workflow nets are used to model the behavior of services,
it may lead to false statements on the absence of deadlocks.

Section 2 introduces P/T-nets, the Abstraction and Composition Process,
and the Programming Model of our service-oriented System. In Section 3 we
explain the main results on limitations of deadlock analysis with the help of an
example presented in Section 2. Related Work is discussed in Section 4. Section
5 concludes our work.

2 Foundations

P/T-Nets A place/transition net (short P/T-net) is a tuple⇧ , (P, T,E,�, µ0)
where

– P is a finite set of places
– T is a finite set of transitions, P [T = ;.
– E ✓ P ⇥ T [T ⇥ P

– � : E ! N is a labelling function
– µ0 : P ! N is the initial marking

A state in ⇧ is a function µ : P ! N. Informally, µ(p) is the number of tokens
in place p.

Note that (P [T,E) is a bipartite directed graph. The set of pre-places of
a transition t is defined as Pre(t) , {p : (p, t) 2 E}. Analagously, the set of
post-places of t is defined as Post(t) , {p : (t, p) 2 E}.

A transition t of ⇧ is enabled in state µ if µ(p) � �((p, t)) for all p 2 Pre(t),
i.e., p contains at least as many tokens as the edge label of (p, t).

If an enabled transition t fires in state µ, then next state µ
0 is computed as

follows:

µ
0(p) ,

8
>>><

>>>:

µ(p) + �(t, p) if p 2 Post(t) \ Pre(t)
µ(p)� �(p, t) if p 2 Pre(t) \ Post(t)
µ(p)� �(p, t) + �(t, p) if p 2 Pre(t) \ Post(t)

µ(p) otherwise
In this paper, a P/T-net ⇧ may also have a final state µf . A state � (6= µf)

is called a deadlock if no transition is enabled in �. The absence of deadlocks is

103

decidable for P/T-nets. It is furthermore decidable if the final state µf is always
reachable from the initial state µ0.

Fig. 3 shows an example. As usual, places are depicted as circles, transi-
tions are depicted as squares, and tokens are depicted as bullets in places. Here
µ0(q0) = 1, and µ0(q) = 0 for all q 2 P \ {q0}. There is no label at the edges. By
default, this means �(e) = 1 for all e 2 E. For example, transition t1 is enabled
in µ0. If t1 fires, then for the next state it holds µ1(q1) = 1, µ1(ib) = 1, and
µ1(q) = 0 for each q 2 P \ {q1, ib}.

A workflow net is a triple WF , (⇧, I, O) where ⇧ = (P, T,E,�, µ0) is a
P/T-net, I ✓ P is a set of input places, O ✓ P is a set of output places, and
I \O = ;. Fig 2 shows four workflow nets. The input and output places are the
places on the border of the box.

AI
BI

CI

q :
1

q :
2

q :
f

 (); void async

 (); void async c

 b

 (); void async

 (); void async c

 b

{RA Interface

}

{I A

}

();avoid

Interface

a

a1

i :
q :

 if e1 {
 call b }

q :
a4 sync b }

r :
a }return

r :

i :
b

b

void b(){
//something no sync/ no call

return }

r :

i :
c

c

void c(){
//something no sync/ no call

return }

implements Ivoid main(){ Rimplements I
q :

0

Service AR
A

void a(){
A Service B

B

implements IService C
C

Service M

}

call a
call c
call b

a2

a3
q :
q :

q :
a5

M

{RM

();a

Interface

void

}

Interface {I

();void
B

b

}

Interface {I

();void

}

C

casync async

 call c }
 else {

if e2 {

else {
 sync c }

return

Fig. 1: A service-oriented system with services M, A, B and C. Service M acts
as a client. Procedure a is a synchronous procedure while procedures b and c are
asynchronous procedures.

Programming Model and Abstraction Process Fig. 1 shows a service-
oriented system with a client service M and services A, B and C. Furthermore,
Fig. 1 defines the interfaces RM , RA. IA, IB , and IC . An interface is a finite set
of procedure signatures (denoted in C-style).

A service X may provide an interface IX (provided interface), i.e., the pro-
cedures in this interface IX have to be implemented by X. This implementation
may call procedures of other services. The set of signatures of these called pro-
cedures is the required interface RX of X.

In Fig. 1, service M has no provided interface and services A, B, and C have
the provided interfaces IA, IB , and IC , respectively. Furthermore service M has
the required interface RM and service A has the required interface RA. Services
B and C have no required interface.

104

Control Structure P/T-Net

q : assignment;
q0 : · · ·

q q’

q1 : if e{
q2 : · · ·
q3 : last program point}

else{
q4 : · · ·
q5 : last program point}
q6 : · · ·

q1
q2

q3

q4
q5

q6

Synchronization

q : sync p;
q0 : · · ·

p{
ip : · · ·
rp : return}

pr

q’

q

Control Structure P/T-Net

Synchronous
procedure p

q : call p
q0 : · · ·

p{
ip : · · ·
rp : return}

piq

pr q’

asynchronous
procedure p

a{· · ·
q : call p
q0 : · · ·
q00 : return}

p{
ip : · · ·
rp : return}

pi

q

q’

pr q"

Table 1: Control-flow abstractions to P/T-nets

Each procedure p in a required interface R must be connected to a procedure
p in a provided interface I.

For example, RM contains the signature void a() and is connected to the
provided interface IA containing the same signature void a(). The service-
oriented system in Fig. 1 starts its execution by executing main in the client
M .

Procedures can be synchronous or asynchronous. If a synchronous procedure
is being called, the caller waits until the callee has been completed. Therefore
synchronous procedure calls behave like classical procedures. In case of recursion,
their semantics behaves as stacks. If an asynchronous procedure is being called,
the caller and the callee are concurrently be executed. For example, in Fig. 1
procedure a is synchronous and procedures b and c are asynchronous, indicated
by the keyword async. It is not possible to connect synchronous procedures to
asynchronous procedures and vice versa.

There are two possibilities of synchronization for asynchronous procedure
calls: First, the caller reaches a sync-statement. In this case, the caller waits
until the callee returns. Second, the caller reaches a return-statement. Then,
the caller waits until the callee returns. For example, the statement qa4 waits
until the call of the asynchronous procedure b in qa1 has been completed. The
other control structures are the classical ones with the classical semantics.

Table 1 shows di↵erent control structures and their abstraction to P/T-nets.
The main principle is that each program point corresponds to a place. Each
procedure p has a unique entry place ip and a unique return place rp.

A token in a place means that the control is at the corresponding program
point in the state of program execution. Important control structures are atomic
statements, e.g., assignments, conditionals, synchronous procedure calls and re-

105

q0

q1

q2

qf

ib

ic

ia

ra

rb

rc

ia

ib

ic

qa2

rb

ra

qa3

qa4
qa5

rc

qa1

ib

rb

ic

rc

MService Service A Service

Service

B

C

Fig. 2: Workflow net abstraction of Fig. 1

turns, asynchronous procedure calls and returns, and synchronizations. Loops
and case statements are abstracted similarly to conditionals.

Note that for each procedure p in a provided interface IX of a service X, ip
is an input place and rp is an output place of the workflow net WFX for X.
Similarly, for each procedure q of a required interface RX of a service X, iq is an
output place and rq an input place of WFX . We further assume that a service
containing only required interfaces is a client and has an initial marking µ0 such
that µ0(q0) = 1 if q0 is the first program point of main and µ0(q0) = 0 otherwise.
For all non-client services, there is no token in the initial marking.

Fig. 2 shows the workflow nets of the abstractions obtained from the service-
oriented system in Fig. 1.

Composition A service-oriented system is implemented by connecting the re-
quired interfaces of a service (external call to another service) to a corresponding
provided interface of another service. Following the ideas of [7], the composition
of workflow nets WF 1, . . . ,WFn is a P/T-net

Pc , (P1 [· · · · · ·Pn, T1 [· · · [Tn, E1 [· · · [En,�1 [· · ·�n, µ
(1)
0 [· · · [µ

(n)
0)

under the assumption that all places in the workflow nets WF i = (⇧i, Ii, Oi)

106

with ⇧i = (Pi, Ti, Ei,�i, µ
(i)
0), i = 1, . . . , n are pairwise disjoint except for input

and output places.

0

1

2

3

4

5 6

7 8 9

10

11 12 13

14

16

17

15

q0

q1

q2

qf

ia

qa2

ra

qa3

qa4
qa5

qa1

ic

rc

Service C

ib

rb

t

t

t

t

t

t t

t t t

t

t t t

t

t

t

t

MService Service A

Service B

Fig. 3: Composition of the workflow nets in Fig. 2

Fig. 3 shows the composition of the workflow nets in Fig. 2.

Remark 1. Suppose service X calls a procedure p of a service Y . Then output
place ip of the workflow net WFX is identified with input place ip of the work-
flow net WFY . Similarly, the output place rp of WFY is identified with the
input place rp of WFX . Note that the output places ib of services M and A are
both identified with the input place ib of service B. Similarly, output place rb

of service B is identified with the input places rb of services M and A, respec-
tively. In certain sense, the treatment of procedures is similar to the treatment in
context-insensitive interprocedural program analysis. We therefore call this kind
of composition context-insensitive composition. In contrast, in context-sensitive
compositions the workflow net for a procedure p is copied for each call. However,
this is impossible if recursion is allowed.

Remark 2. Our approach is similar to [7]. There, the workflow nets are called
modules and in addition, each module has a unique starting place ↵ and a unique
final place !. Hence, the abstractions to workflow nets as discussed in our work
are modules in the sense of [7]. Our notion of composition corresponds to the
notion of syntactic composition of modules.

107

Remark 3. For Mayr’s process rewrite systems (PRS), P/T-nets are equivalent
to the class of (P,P)-PRS [8]. The abstraction mechanism leads to a set of PRS
rules for each service [5]. The composition is called combined abstraction [1]. For
the special class of (P,P)-PRS, this corresponds to the composition of workflow
nets as described above.

3 Limitations of Deadlock Analysis

Claim 1 The P/T-net abstraction (cf. Fig. 3) of the service-oriented system in
Fig. 1 is deadlock-free.

Proof. It must be shown that the final state µf (i.e. µf (qf) = 1 and µf (q) = 0
for all places q 6= qf is always reached from the initial state µ0. For simplicity,
for all places q not mentioned in the definition of a state µ, we assume µ(q) = 0.

Step 1: Each state µ1 2 M1 , {µ : µ(ra) = 1, µ(ib)+µ(rb)+µ(ic)+µ(rc) = 2}
always reaches µf

Step 2: Each state µ2 2 M2 , {µ : µ(qa3) = 1, µ(ib)+µ(ib) � 1, µ(ic)+µ(ic) �
1, µ(ib) + µ(ib) + µ(ic) + µ(ic) = 3} always reaches a state µ1 2 M1

Step 3: µ0 always reaches a state µ2 2 M2.

If we have proven this, then the initial state q0 always reaches qf .

Remark 4. M1 contains all states where ra has one token and services B and
C together have two tokens. M2 describes all states where qa3 has one token,
services B and C have at least one token and both service, B and C have together
three tokens.

Step 1: It is su�cient to consider only situations where service B and C has
tokens in rb and rc since tokens in ib and ic mean that transitions t9 are t10

enabled and ib and ic do not have othter successors. We consider the following
two cases:

(i) ra, rb, and rc have one token, i.e. only transitions t12, t14 and t15 are enabled.
(ii) ra has one token and rb has two tokens, i.e., only transitions t12 and t15 are

enabled.

The case where ra has one token and rc has two tokens is analgous to (ii). The
following tables show all possible firing sequences of (i) and (ii). Each of this
firing sequences end in the final state µf :
(i) : t12, t14, t15

t12, t15, t17

t14, t12, t15

t14, t15, t16

(ii) : t12, t12, t15
t12, t15, t16

t15, t16, t16

Step 2: Analogously to Step 1, it is su�cient to consider only situations where
service B and C have their tokens in rb and rc, respectively. We consider the
case where rb has two tokens and rc has one token. The other case (rb has one
token and rc has two tokens) is proven analogously. In this state, t7 and t8 are

108

the only two transitions being enabled. The following firing sequence all lead to
a state µ1 2 M1:
t7, t11 reaches state µ(ra) = µ(rb) = µ(rc) = 1
t8, t13 reaches state µ(ra) = 1, µ(rb) = 2, µ(rc) = 0
Step 3: According to the discussions of Steps 1 and 2, it is su�cient to consider
only situations where ib and ic have at least one token, respectivly, and µ(ib) +
µ(ic) = 3. We show that a state µ2 2 M2 is alywas be reached from the initial
state. Under the above circumstances, the simulation of the P/T-net always
starts with the firing sequence t0, t1, t2 reaches a state where ia, ib and ic contain
one token, respectively. Now, the transitions t3 and t4 are the only enabled
transitions (except the inner transitions t9 and t10). If t3 fires, then only t6 is
enabled, leading to one token in qa3, one token in ib, and two tokens in ic. If t4
fires, then only t5 is enabled leading to one token in qa3, two tokens in ib, and
one tokens in ic. Both states are in M2.

Control
Structure

Cactus Stack
Control
Structure

Cactus Stack

assignment q
2

q
1

asynchronous
procedure
call

q
2

q
1

q
3

synchronous
procedure
call

q
1

q
2

q
3

return asyn-
chronous
procedure
call

q
1

q
2

q
2

return syn-
chronous
procedure
call

q
2

q
1

q
2

synchron-
ization

q
1

q
2

q
3

Table 2: Execution Semantics with Cactus Stacks (program points)

We look now at the execution of the service-oriented system in Fig. 1. The
runtime system is based on cactus stacks. Cactus stacks were introduced as tree
of stacks by [3]. Our execution model includes states of unbounded recursion and
unbounded concurrency. These states can be represented by cactus stacks. Thus,
the execution transforms cactus stacks into cactus stacks. Table 2 shows these
transisitions. If a synchronous procedure is called, there is transisition to the next
program point and a stack frame with the initial state of the called procedure is
pushed onto a stack. If an asynchronous procedure is called, a new stack frame
is created that forks from the caller. The top stack frame of the caller and the
bottom element of the new stack are linked together (like a saguaro cactus).
Thus, synchronization is only possible with two elements that are forked from a
top-of-stack frame.

109

Claim 2 The service-oriented system in Figure 1 may end in a deadlock.

Proof. Table 3 shows an execution trace of the service-oriented system in Fig. 1.
In the first step q0 forks to q1 and ib. Then, the control moves from ib to rb which
waits for synchronization or the return from main. Hence, the only possible step
is the asynchronous call of c. The next step move the control to rc. Now, the
only possibility is the (synchronous) call of a. This means that the next state qf
and the initial state ia are pushed on the stack. After this call it is not possible
to synchronize with rb and rc forked from qf since qf is not at top of a stack.The
final cactus stack is a deadlock since qa5 waits for synchronization with rc but
there is no rc for synchronization.

Remark 5. [5] discusses the abstraction to general PRS and shows a 1 � 1 cor-
respondence betweem cactus stacks (of program points) and process-alegebraic
expressions. Hence, the deadlock can be found by using general PRS.

q
0)

q
1

i
b

)
q

1

r
b

)

q
2

c
i r

b

)

q
2

b
r

c
r)

f
q

c
r

b
ri

a

)

f
q

c
r q

a1 b
r) r

b

i
b

f
q

c
r q

a3

) r
b

i
b

q

f
q

c
r

a5

)

r
b

r
b

f
q

c
r q

a5

Table 3: Derivation from the initial state to a deadlock

Remark 6. The deadlock in Table 3 means that the control reached rc, qa5 and
twice rb. This means that the P/T-net in Fig. 3 reaches a state that contains

110

two tokens in rb, one token in rc, and one token in qa5. Thus t13 is enabled and
it is the only transition being enabled. Hence, the deadlock in the execution of
the service-oriented system does not correspond to a deadlock in the P/T-net
abstraction (based on workflow nets).

4 Related Work

Woflan [11] is a Petri Net-based analysis tool which verifies parallel business
process worklflows. Recursion of processes are not considered. It is not clear
whether their composition is context-sensitive or context-insensitive.

In [9] recursive Petri Nets (rPNs) are used to model the planning of au-
tonomous agents which transport goods from location A to location B and their
coordinating problem. The model of rPNs is used to model dynamic processes
(e.g., agent’s request). Deadlocks can only arise when interactions between agents
(e.g., shared attributes) invalidates preconditions. For that reason a coordinating
algorithm is introduced to prevent these interactions between agents.

A refinement based approach is described in [6]. Hicheur models healthcare
processes based on algebraic and recursive Petri Nets [4], a high level algebraic
Petri Net. Hicheur et al. use recursive Petri Net to model subprocesses that are
called by a process (e.g., the main process), i.e. a context-sensitive composition.
However, to the best of our knowledge, we are not aware of any work on deadlock
analysis for recursive Petri Nets.

Bouajjani et al. [2] propose an abstraction-based approach to model con-
trol structures of recursively parallel programs (e.g. Cilk, X10, Multilisp). Their
approach is based on recursive vector addition systems. They explore the decid-
ability and complexity of state-reachability. It seems that their model is slightly
more general than ours as there are situations where the reachability problem
becomes undecidable.

Our approach is similar to [7], cf. Remark 2. However, it seems that exactly
one call to a module is being considered. Hence, context-sensitivity does not play
a role in the notion of composition.

We are not aware of any work stating out the drawback of deadlock anal-
ysis of systems with synchronous and asynchronous procedure calls and also
synchronization concepts.

5 Conclusion

We presented an example of a service-oriented system with synchronous proce-
dures, asynchronous procedures and a barrier-based synchronization mechanism.
We have discussed a straightforward abstraction mechanism to workflow nets
and their context-insensitive composition to P/T-nets. Furthermore, we have
also shown a runtime based on cactus stacks (which was already be defined as a
runtime system of Simula67 [3]). Our main result is an example that the work-
flow net approach doesn’t satisfy its goals for deadlock analysis: the resulting

111

P/T-net is free of deadlocks (Claim 1) while the execution of the service-oriented
system leads to a deadlock (Claim 1). Note, that our example is not a spurious
counterexample. A spurious counterexample would be a deadlock in the P/T-
net while the service-oriented system is deadlock-free. In our previous work [12],
we showed another phenomenon using workflow nets abstractions: the approach
only has spurious counterexamples while the real one is not discovered.

Our result shows that in general, deadlock checking based on straightforward
P/T-net abstraction with context-insensitive composition should not be used to
prove deadlock-freeness. In contrast, PRS-abstractions are able to model the
stack behavior of synchronous procedure calls as well. On the other hand, it
might be that context-sensitive composition might solve the problem for bound
recursion depth. Unbound recursion would require an infinite expansion of the
procedure calls.

In future work it remains to investigate the concurrent and recursive concept
and also the synchronization concept of other languages (e.g. Java Threads, Sim-
ula and so on). Another open issue is the occurence of deadlocks in a certain
recursion depth. We conjecture that if a deadlock associated with recursive be-
havior (recursion or recursive callbacks) in a service-oriented system occurs, in
its PRS-abstraction it always occurs in recursion depth one. If the conjecture
would be true, it should be possible to use a P/T-net-based abstraction for dead-
lock checking (possibly with a special class of context-sensitive compositions of
workflow nets).

References

1. Both, A., Zimmermann, W.: Automatic protocol conformance checking of recursive
and parallel component-based systems. In: Component-Based Software Engineer-
ing, 11th International Symposium (CBSE 2008). pp. 163–179 (October 2008)

2. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: ACM SIG-
PLAN Notices. vol. 47, pp. 203–214. ACM (2012)

3. Dahl, O.J., Nygaard, K.: Simula: an algol-based simulation language. Communi-
cations of the ACM 9, 671–678 (1966)

4. Haddad, S., Poitrenaud, D.: Modelling and analyzing systems with recursive petri
nets. In: Discrete Event Systems, pp. 449–458. Springer (2000)

5. Heike, C., Zimmermann, W., Both, A.: On expanding protocol conformance check-
ing to exception handling. Service Oriented Computing and Applications 8(4),
299–322 (2014)

6. Hicheur, A., Dhieb, A.B., Barkaoui, K.: Modelling and analysis of flexible health-
care processes based on algebraic and recursive petri nets. In: Foundations of Health
Information Engineering and Systems, pp. 1–18. Springer (2012)

7. Martens, A.: Analyzing web service based business processes. In: International Con-
ference on Fundamental Approaches to Software Engineering. pp. 19–33. Springer
(2005)

8. Mayr, R.: Process rewrite systems. Information and Computation 156(1-2), 264–
286 (2000)

9. Seghrouchni, A.E.F., Haddad, S.: A recursive model for distributed planning. In:
Proceedings of the 2nd International Conference on Multi-Agent Systems (IC-
MAS’96). pp. 307–314 (1996)

112

10. Van Der Aalst, W.M.: Workflow verification: Finding control-flow errors us-
ing petri-net-based techniques. In: Business Process Management, pp. 161–183.
Springer (2000)

11. Verbeek, E., Van Der Aalst, W.M.: Woflan 2.0 a petri-net-based workflow diagnosis
tool. In: Application and Theory of Petri Nets 2000, pp. 475–484. Springer (2000)

12. Weißbach, M., Zimmermann, W.: On abstraction based deadlock analysis in
service-oriented systems with recursion. In: Proceedings of the European Confer-
ence on Service-Oriented and Cloud Computing (ESOCC 2017) (2017), to appear

13. Zimmermann, W., Schaarschmidt, M.: Automatic checking of component protocols
in component-based systems. In: Löwe, W., Südholt, M. (eds.) Software Composi-
tion. LNCS, vol. 4089, pp. 1–17. Springer (2006)

113

	ESOCC-Workshops-Papers.pdf
	CloudWays2018_paper_1.pdf
	Performance Engineering for Kubernetes-style Cloud Cluster Architectures using Model-Driven Simulation

	CloudWays2018_paper_4.pdf
	On enhancing the orchestration of multi-container Docker applications

