Query Processing in Data Integration Systems

Diego Calvanese

Free University of Bozen-Bolzano

BIT PhD Summer School – Bressanone
July 3–7, 2006
Structure of the course

1. **Introduction to data integration**
 - Basic issues in data integration
 - Logical formalization

2. **Query answering in the absence of constraints**
 - Global-as-view (GAV) setting
 - Local-as-view (LAV) and GLAV setting

3. **Query answering in the presence of constraints**
 - The role of integrity constraints
 - Global-as-view (GAV) setting
 - Local-as-view (LAV) and GLAV setting

4. **Concluding remarks**
Part I

Query answering in the presence of constraints
Part 3: Query answering with constraints

Outline

1 Query answering in GAV without constraints
 - Retrieved global database
 - Query answering via unfolding
 - Universal solutions

2 Query answering in (G)LAV without constraints
 - (G)LAV and incompleteness
 - Approaches to query answering in (G)LAV
 - (G)LAV: Direct methods (aka view-based query answering)
 - (G)LAV: Query answering by (view-based) query rewriting
Outline

1. Query answering in GAV without constraints
 - Retrieved global database
 - Query answering via unfolding
 - Universal solutions

2. Query answering in (G)LAV without constraints
 - (G)LAV and incompleteness
 - Approaches to query answering in (G)LAV
 - (G)LAV: Direct methods (aka view-based query answering)
 - (G)LAV: Query answering by (view-based) query rewriting
Global integrity constraints

- Integrity constraints (ICs) are posed over the global schema
- Specify intensional knowledge about the domain of interest
- Add semantics to the information
- But data in the sources can conflict with global ICs
- The presence of global ICs raises semantic and computational problems
- Many open issues
Integrity constraints for relational schemas

Most important types of ICs for the relational model:

- key dependencies (KDs)
- functional dependencies (FDs)
- foreign keys (FKs)
- inclusion dependencies (IDs)
- exclusion dependencies (EDs)
Inclusion dependencies (IDs)

An inclusion dependency (ID) states that the presence of a tuple \(\vec{t}_1 \) in a relation implies the presence of a tuple \(\vec{t}_2 \) in another relation, where \(\vec{t}_2 \) contains a projection of the values contained in \(\vec{t}_1 \).

Syntax of inclusion dependencies

\[
\begin{align*}
 r[i_1, \ldots, i_k] & \subseteq s[j_1, \ldots, j_k] \\
 \text{with } i_1, \ldots, i_k & \text{ components of } r, \text{ and } j_1, \ldots, j_k & \text{ components of } s
\end{align*}
\]

Example

For \(r \) of arity 3 and \(s \) of arity 2, the ID \(r[1] \subseteq s[2] \) corresponds to the FOL sentence

\[
\forall x, y, w. \ r(x, y, w) \rightarrow \exists z. \ s(z, x)
\]

Note: IDs are a special form of tuple-generating dependencies
Key dependencies (KDs)

A key dependency (KD) states that a set of attributes functionally determines all the attributes of a relation.

Syntax of key dependencies:

\[\text{key}(r) = \{i_1, \ldots, i_k\} \]

with \(i_1, \ldots, i_k\) components of \(r\).

Example:

For \(r\) of arity 3, the KD \(\text{key}(r) = \{1\}\) corresponds to the FOL sentence:

\[\forall x, y, y', z, z'. r(x, y, z) \land r(x, y', z') \rightarrow y = y' \land z = z' \]

Note: KDs are a special form of equality-generating dependencies.
Exclusion dependencies (EDs)

An exclusion dependency (ED) states that the presence of a tuple \vec{t}_1 in a relation implies the absence of a tuple \vec{t}_2 in another relation, where \vec{t}_2 contains a projection of the values contained in \vec{t}_1.

Syntax of exclusion dependencies

$$r[i_1, \ldots, i_k] \cap s[j_1, \ldots, j_k] = \emptyset$$

with i_1, \ldots, i_k components of r, and j_1, \ldots, j_k components of s

Example

For r of arity 3 and s of arity 2, the ED $r[1] \cap s[2] = \emptyset$ corresponds to the FOL sentence

$$\forall x, y, w, z. \ r(x, y, w) \rightarrow \neg s(z, x)$$

Note: EDs are a special form of denial constraints
Outline

1. Query answering in GAV without constraints
 - Retrieved global database
 - Query answering via unfolding
 - Universal solutions

2. Query answering in (G)LAV without constraints
 - (G)LAV and incompleteness
 - Approaches to query answering in (G)LAV
 - (G)LAV: Direct methods (aka view-based query answering)
 - (G)LAV: Query answering by (view-based) query rewriting
GAV system with integrity constraints

We consider a data integration system \(\mathcal{I} = \langle G, S, M \rangle \) where

- \(G \) is a global schema with constraints
- \(M \) is a set of GAV mappings, whose assertions have the form \(\phi_S \leadsto g \) and are interpreted as

\[
\forall \vec{x}. \phi_S(\vec{x}) \rightarrow g(\vec{x})
\]

where \(\phi_S \) is a conjunctive query over \(S \), and \(g \) is an element of \(G \)

Basic observation: Since \(G \) does have constraints, the retrieved global database \(M(C) \) may not be legal for \(G \)
Semantics of GAV systems with integrity constraints

Given a source db C, a global db B (over Δ) satisfies \mathcal{I} relative to C if

1. it is legal wrt the global schema, i.e., it satisfies the ICs
2. it satisfies the mapping, i.e., B is a superset of the retrieved global database $\mathcal{M}(C)$ (sound mappings)

Recall:

- $\mathcal{M}(C)$ is obtained by evaluating, for each relation in A_G, the corresponding mapping query over the source database C
- We are interested in certain answers to a query, i.e., those that hold for all global databases that satisfy \mathcal{I} relative to C
GAV with constraints – Example

Consider \(\mathcal{I} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle \), with

\[
\begin{align*}
\mathcal{G}: & \quad \text{student}(Code, Name, City) \quad \text{key}(\text{student}) = \{Code\} \\
& \quad \text{university}(Code, Name) \quad \text{key}(\text{university}) = \{Code\} \\
& \quad \text{enrolled}(Scode, Ucode)
\end{align*}
\]

\[
\text{enrolled}[\text{Scode}] \subseteq \text{student}[\text{Code}] \\
\text{enrolled}[\text{Ucode}] \subseteq \text{university}[\text{Code}]
\]

Source schema \(\mathcal{S} \):

\[
\begin{align*}
\mathcal{s}_1 &: (Scode, Sname, City, Age), \\
\mathcal{s}_2 &: (Ucode, Uname), \quad \mathcal{s}_3 &: (Scode, Ucode)
\end{align*}
\]

Mapping \(\mathcal{M} \):

\[
\begin{align*}
\{ & (c, n, ci) \mid \mathcal{s}_1(c, n, ci, a) \} \sim \text{student}(c, n, ci) \\
\{ & (c, n) \mid \mathcal{s}_2(c, n) \} \sim \text{university}(c, n) \\
\{ & (s, u) \mid \mathcal{s}_3(s, u) \} \sim \text{enrolled}(s, u)
\end{align*}
\]
GAV with constraints – Example of retrieved global db

Example of source database \mathcal{C} and corresponding retrieved global database $\mathcal{M}(\mathcal{C})$
GAV with constraints – Example of incompleteness

\(s_3^C \)

\[
\begin{array}{cc}
12 & AF \\
16 & BN \\
\end{array}
\]

\(\text{enrolled}^B \)

\[
\begin{array}{cc}
\text{Scode} & \text{Ucode} \\
12 & AF \\
16 & BN \\
\end{array}
\]

\(\text{student}^B \)

\[
\begin{array}{ccc}
\text{Code} & \text{Name} & \text{City} \\
12 & anne & florence \\
15 & bill & oslo \\
16 & x & y \\
\end{array}
\]

\(s_3^C(16, BN) \) and the mapping imply \(\text{enrolled}^B(16, BN) \) for all \(B \in \text{sem}^C(I) \)

Due to the inclusion dependency \(\text{enrolled}[\text{Scode}] \subseteq \text{student}[\text{Code}] \) in \(G \), 16 is the code of some student in all \(B \in \text{sem}^C(I) \)

Since \(C \) does not provide information about name and city of the student with code 16, a global database that is legal for \(I \) wrt \(C \) may contain arbitrary values for these
GAV with constraints – Unfolding is not sufficient

Mapping \mathcal{M}:

- $\{ (c, n, c\i) \mid s_1(c, n, c\i, a) \}$ \mapsto student($c, n, c\i$)
- $\{ (c, n) \mid s_2(c, n) \}$ \mapsto university(c, n)
- $\{ (s, u) \mid s_3(s, u) \}$ \mapsto enrolled(s, u)

<table>
<thead>
<tr>
<th>s^c_1</th>
<th>12</th>
<th>anne</th>
<th>florence</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>bill</td>
<td>oslo</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s^c_2</th>
<th>AF</th>
<th>bocconi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BN</td>
<td>ucla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s^c_3</th>
<th>12</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>BN</td>
</tr>
</tbody>
</table>

Consider the query: $q = \{ (c) \mid \text{student}(c, n, c\i) \}$

Unfolding of q wrt \mathcal{M}: $\text{unf}_\mathcal{M}(q) = \{ (c) \mid s_1(c, n, c\i, a) \}$

The query $\text{unf}_\mathcal{M}(q)$ retrieves from C only the answer $\{12, 15\}$, while the correct answer would be $\{12, 15, 16\}$

The simple unfolding strategy is not sufficient for GAV with constraints
GAV with constraints – Example of inconsistency

<table>
<thead>
<tr>
<th>s^C_1</th>
<th>(\text{Code})</th>
<th>(\text{Name})</th>
<th>(\text{City})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>anne</td>
<td>florence</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>bill</td>
<td>oslo</td>
<td>24</td>
</tr>
</tbody>
</table>

The tuples in s^C_1 and the mapping imply $\text{student}^B(12, \text{anne}, \text{florence})$ and $\text{student}^B(12, \text{bill}, \text{oslo})$, for all B that satisfy the mapping.

Due to the key dependency $\text{key}(\text{student}) = \{\text{Code}\}$ in \mathcal{G}, there is no global database that satisfies the mapping and is legal wrt the global schema, i.e., $\text{sem}^I(C) = \emptyset$.
Part 3: Query answering with constraints

GAV data integration systems with constraints

<table>
<thead>
<tr>
<th>Constraints in G</th>
<th>Type of mapping</th>
<th>Incompleteness</th>
<th>Inconsistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>GAV</td>
<td>yes / no</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>(G)LAV</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>IDs</td>
<td>GAV</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>KDs</td>
<td>GAV</td>
<td>yes / no</td>
<td>yes</td>
</tr>
<tr>
<td>IDs + KDs</td>
<td>GAV</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>yes</td>
<td>(G)LAV</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
GAV with constraints – Incompleteness and inconsistency

Incompleteness

Inconsistency

Models of I

Retrieved GDB $M(C)$
Inclusion dependencies – Example

Global schema G:
\[
\text{player}(Pname, YOB, Pteam) \\
\text{team}(Tname, Tcity, Tleader)
\]

Constraints:
$\text{team}[Tleader, Tname] \subseteq \text{player}[Pname, Pteam]$

Sources S:
s_1 and s_3 store players
s_2 stores teams

Mapping M:
\[
\{ (x, y, z) \mid s_1(x, y, z) \lor s_3(x, y, z) \} \leadsto \text{player}(x, y, z) \\
\{ (x, y, z) \mid s_2(x, y, z) \} \leadsto \text{team}(x, y, z)
\]
Inclusion dependencies – Example retrieved global db

Source database C:

s_1: Totti 1971 Roma
s_2: Juve Torino Del Piero
s_3: Buffon 1978 Juve

Retrieved global database $M(C)$:

player:
<table>
<thead>
<tr>
<th>Totti</th>
<th>1971</th>
<th>Roma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffon</td>
<td>1978</td>
<td>Juve</td>
</tr>
</tbody>
</table>

team:
| Juve | Torino | Del Piero |
Inclusion dependencies – Example retrieved global db

<table>
<thead>
<tr>
<th>player</th>
<th></th>
<th></th>
<th>team:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totti</td>
<td>1971</td>
<td>Roma</td>
<td></td>
</tr>
<tr>
<td>Buffon</td>
<td>1978</td>
<td>Juve</td>
<td></td>
</tr>
<tr>
<td>Del Piero</td>
<td>α</td>
<td>Juve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Juve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Torino</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Del Piero</td>
</tr>
</tbody>
</table>

The ID on the global schema tells us that Del Piero is a player of Juve.

All global databases satisfying \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain Δ.

Warnings

1. There may be an **infinite number** of databases satisfying \mathcal{I}.
2. In case of cyclic IDs, databases satisfying \mathcal{I} may be of **infinite size**.
Inclusion dependencies – Example retrieved global db

<table>
<thead>
<tr>
<th>player</th>
<th>team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totti 1971 Roma</td>
<td></td>
</tr>
<tr>
<td>Buffon 1978 Juve</td>
<td></td>
</tr>
<tr>
<td>Del Piero α Juve</td>
<td></td>
</tr>
</tbody>
</table>

The ID on the global schema tells us that Del Piero is a player of Juve.

All global databases satisfying \mathcal{I} have at least the tuples shown above, where α is some value of the domain Δ.

Consider the query $q = \{ (x, z) \mid \text{player}(x, y, z) \}$

$\text{cert}(q, \mathcal{I}, C) = \{ (\text{Totti, Roma}), (\text{Buffon, Juve}), (\text{Del Piero, Juve}) \}$
Chasing inclusion dependencies – Infinite construction

Intuitive strategy: Add new facts until IDs are satisfied

Problem: Infinite construction in the presence of cyclic IDs

Example

Let r be binary with $r[2] \subseteq r[1]$

Suppose $\mathcal{M}(C) = \{ r(a, b) \}$

1. add $r(b, c_1)$
2. add $r(c_1, c_2)$
3. add $r(c_2, c_3)$
4. ... (ad infinitum)

Example

Let r, s be binary with $r[1] \subseteq s[1]$, $s[2] \subseteq r[1]$

Suppose $\mathcal{M}(C) = \{ r(a, b) \}$

1. add $s(a, c_1)$
2. add $r(c_1, c_2)$
3. add $s(c_1, c_3)$
4. add $r(c_3, c_4)$
5. ... (ad infinitum)
The chase of a database

Definition

The chase of a database is the exhaustive application of a set of rules that transform the database, in order to make it consistent with a set of integrity constraints.

Typically, there will be one or more chase rules for each different type of constraint.
The ID-chase rule

The chase for IDs has only one rule, the **ID-chase rule**

Let \mathcal{D} be a database:

if the schema contains the ID $r[i_1, \ldots, i_k] \subseteq s[j_1, \ldots, j_k]$

and there is a fact in \mathcal{D} of the form $r(a_1, \ldots, a_n)$

and there are no facts in \mathcal{D} of the form $s(b_1, \ldots, b_m)$

such that $a_{i_\ell} = b_{j_\ell}$ for each $\ell \in \{1, \ldots, k\}$,

then add to \mathcal{D} the fact $s(c_1, \ldots, c_m)$,

where for each $h \in \{1, \ldots, m\}$,

if $h = j_\ell$ for some ℓ then $c_h = a_{i_\ell}$

otherwise c_h is a new constant symbol (not in \mathcal{D} yet)

Notice: New existential symbols are introduced (skolem terms)
Properties of the chase

- Bad news: the chase is in general infinite

- Good news: the chase identifies a canonical model
 A canonical model is a database that “represents” all the models of the system

- We can use the chase to prove soundness and completeness of a query processing method

- ... but only for positive queries!
Limiting the chase

Why don’t we use a finite number of existential constants in the chase?

Example

Consider \(r[1] \subseteq s[1] \), and \(s[2] \subseteq r[1] \) and suppose \(M(C) = \{ r(a, b) \} \)

Compute chase\((M(C)) \) with only one new constant \(c_1 \):

0) \(r(a, b) \);
1) add \(s(a, c_1) \)
2) add \(r(c_1, c_1) \)
3) add \(s(c_1, c_1) \)

This database is not a canonical model for \(\mathcal{I} \) wrt \(C \)

E.g., for query \(q = \{ (x) \mid r(x, y), s(y, y) \} \), we have \(a \in q^{\text{chase}(M(C))} \)
while \(a \notin \text{cert}(q, \mathcal{I}, C) \)

Arbitrarily limiting the chase is unsound, for any finite number of new constants
Chasing the query

When chasing the data the termination condition would need to take into account the query.

We consider an alternative approach, based on the idea of a query chase:

- Instead of chasing the data, we chase the query.
- Is the dual notion of the database chase.
- IDs are applied from right to left to the query atoms.
- Advantage: much easier termination conditions, which imply:
 - decidability properties
 - efficiency

This technique provides an algorithm for rewriting UCQs under IDs.
Query rewriting under inclusion dependencies

- Given a query q over the global schema G, we look for a rewriting rew of q expressed over S.

- A rewriting rew is **perfect** if $rew^C = cert(q, I, C)$, for every source database C.

- With a perfect rewriting, we can do **query answering by rewriting**.
 \therefore We avoid actually constructing the retrieved global database $M(C)$.
Rewriting rule for inclusion dependencies

Intuition: Use the IDs as basic rewriting rules

Example

Consider a query \(q = \{ (x, z) \mid \text{player}(x, y, z) \} \) and the constraint \(\text{team}[T\text{leader}, T\text{name}] \subseteq \text{player}[P\text{name}, P\text{team}] \) as a logic rule:

\[
\text{player}(w_3, w_4, w_1) \leftarrow \text{team}(w_1, w_2, w_3)
\]

We add to the rewriting the query \(q' = \{ (x, z) \mid \text{team}(x, y, z) \} \)

Definition

Basic rewriting step:

- **when** an atom unifies with the **head** of the rule
- **substitute** the atom with the **body** of the rule
Query Rewriting for IDs – Algorithm \textit{ID-rewrite}

Iterative execution of:

1. Reduction:
 - Atoms that unify with other atoms are eliminated and the unification is applied
 - Variables that appear only once are marked

2. Basic rewriting step
 - A rewriting step is applicable to an atom if it does not eliminate variables that appear somewhere else
 - May introduce fresh variables

\textit{Note:} The algorithm works directly for unions of conjunctive queries (UCQs), and produces an UCQ as result
The algorithm *ID-rewrite*

Input: relational schema \mathcal{G}, set Ψ_{ID} of IDs, UCQ Q

Output: perfect rewriting of Q

$Q' := Q$;

repeat

$Q_{aux} := Q'$;

for each $q \in Q_{aux}$ **do**

(a) **for each** $g_1, g_2 \in \text{body}(q)$ **do**

 if g_1 and g_2 unify then $Q' := Q' \cup \{ \tau(\text{reduce}(q, g_1, g_2)) \}$;

(b) **for each** $g \in \text{body}(q)$ **do**

 for each $ID \in \Psi_{ID}$ **do**

 if ID is applicable to g

 then $Q' := Q' \cup \{ q[g/\text{rewrite}(g, ID)] \}$

until $Q_{aux} = Q'$;

return Q'
Properties of \textit{ID-rewrite}

- \textit{ID-rewrite} terminates
- \textit{ID-rewrite} produces a perfect rewriting of the input query

More precisely, let $\text{unf}_M(q)$ be the unfolding of the query q wrt the GAV mapping M

\begin{theorem}
$\text{unf}_M(\text{ID-rewrite}(q))$ is a perfect rewriting of the query q
\end{theorem}

\begin{theorem}
Query answering in GAV systems under IDs is in \textsc{PTime} in data complexity (actually in \textsc{LogSpace})
\end{theorem}
Query answering under IDs and KDs

We have already seen that in GAV systems under sound mappings

- Key dependencies may give rise to inconsistencies
- When $M(C)$ violates the KDs, no legal database exists and query answering becomes trivial

How do KDs interact with IDs?

Theorem

Query answering under IDs and KDs is undecidable

Proof: By reduction from implication of IDs and KDs

We need to look for *syntactic restrictions* on the form of the dependencies that ensures decidability
Non-key-conflicting IDs

Definition

Non-key-conflicting IDs (NKCIDs) are of the form $r_1[\vec{x}_1] \subseteq r_2[\vec{x}_2]$ where \vec{x}_2 is not a strict superset of $\text{key}(r_2)$

Example

Let r be of arity 3 and s of arity 4 with $\text{key}(s) = \{1, 2\}$

- The following are NKCIDs
 - $r[2] \subseteq s[2]$, since $\{2\}$ is a strict subset of $\text{key}(s)$
 - $r[2, 3] \subseteq s[1, 2]$, since $\{1, 2\}$ coincides with $\text{key}(s)$
 - $r[1, 2] \subseteq s[2, 3]$, since $1 \in \text{key}(s)$ but $1 \notin \{2, 3\}$

- The following is not a NKCID: $r[1, 2, 3] \subseteq s[1, 2, 4]$

Note: Foreign keys (FKs) are a special case of NKCIDs
Separation for IDs and KDs

Theorem (IDs-KDs separation)

Under KDs and NKCIDs, if $\mathcal{M}(\mathcal{C})$ satisfies the KDs, then the KDs can be ignored wrt certain answers of a user query q.

Intuition: For NKCID, when applying the ID-chase rule to a tuple $\vec{t}_1 \in r_1^B$, we can choose the tuple \vec{t}_2 to introduce in r_2^B so that it does not violate $\text{key}(r_2)$:

- When $\text{key}(r_2) \not\subseteq \vec{x}_2$, fresh constants in \vec{t}_2 are chosen for key attributes, and so there is no other tuple in r_2^B coinciding with \vec{t}_2 on all key attributes.
- When $\text{key}(r_2) = \vec{x}_2$, if there is already a tuple \vec{t} in r_2^B such that $\vec{t}_1[\vec{x}_1] = \vec{t}[\vec{x}_2]$, we choose \vec{t} for \vec{t}_2.

Query answering becomes undecidable as soon as we extend the language of the IDs.
Query processing under separable KDs and IDs

Global algorithm:

1. Verify consistency of $\mathcal{M}(C)$ with respect to KDs
2. Compute ID-rewrite of the input query
3. Unfold wrt \mathcal{M} the query computed at previous step
4. Evaluate the unfolded query over the sources

Note:

- The KD consistency check can be done by suitable CQs with inequality
- The computation of $\mathcal{M}(C)$ can be avoided (by unfolding the queries for the KD consistency check)
Checking KD consistency – Example

Relation: \(\text{player} [Pname, Pteam] \)
Key dependency: \(\text{key}(\text{player}) = \{Pname\} \)

Query to check (in)consistency of the KD:
\[
q = \{ () | \text{player}(x, y), \text{player}(x, z), y \neq z \}
\]
is true iff the instance of player violates the KD

Mapping \(\mathcal{M} \):
\[
\{ (x, y) | \text{s}_1(x, y) \lor \text{s}_2(x, y) \} \sim \text{player}(x, y)
\]

Unfolding of \(q \) wrt \(\mathcal{M} \):
\[
\{ () | \text{s}_1(x, y), \text{s}_1(x, z), y \neq z \lor \\
\text{s}_1(x, y), \text{s}_2(x, z), y \neq z \lor \\
\text{s}_2(x, y), \text{s}_1(x, z), y \neq z \lor \\
\text{s}_2(x, y), \text{s}_2(x, z), y \neq z \}
\]
Query answering in GAV under separable IDs+KDs

Theorem (Calì, Lembo & Rosati, PODS’03)

Answering conjunctive queries in GAV systems under KDs and NKCIDs is in PTIME in data complexity (actually in LogSPACE)

Can we extend these results to more expressive user queries?

- The rewriting technique extends immediately to unions of CQs

 $\text{ID-rewrite}(q_1 \lor \cdots \lor q_n) = \text{ID-rewrite}(q_1) \lor \cdots \lor \text{ID-rewrite}(q_n)$

- This is not the case for recursive queries

Theorem (— & Rosati KRDB’03)

Answering recursive queries under KDs and FKS is undecidable

Answering recursive queries under IDs is undecidable
Query answering under IDs and EDs

Under EDs:
- Possibility of inconsistencies
- When $\mathcal{M}(C)$ violates the EDs, no legal database exists and query answering becomes trivial

Under IDs and EDs:
- How do EDs and IDs interact?
- Is query answering separable?
- Is query answering decidable?
Exclusion dependencies – Example

Global schema \mathcal{G}:
- player($Pname$, YOB, $Pteam$)
- team($Tname$, $Tcity$, $Tleader$)
- coach($Cname$, $Cteam$)

Constraints:
- team[$Tleader$, $Tname$] \subseteq player[$Pname$, $Pteam$]
- coach[$Cname$] \cap player[$Pname$] = \emptyset

Sources \mathcal{S}:
- s_1 and s_3 store players
- s_2 stores teams
- s_4 stores coaches

Mapping \mathcal{M}:
- $\{ (x, y, z) \mid s_1(x, y, z) \lor s_3(x, y, z) \} \sim player(x, y, z)$
- $\{ (x, y, z) \mid s_2(x, y, z) \} \sim team(x, y, z)$
- $\{ (x, y) \mid s_4(x, y, z) \} \sim coach(x, y)$
Retrieved global db under EDs – Example

Source database C:

s_1: Totti 1971 Roma
s_2: Juve Torino Del Piero
s_3: Buffon 1978 Juve
s_4: Del Piero Viterbese

Retrieved global database $M(C)$:

player:

<table>
<thead>
<tr>
<th>Totti</th>
<th>1971</th>
<th>Roma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffon</td>
<td>1978</td>
<td>Juve</td>
</tr>
</tbody>
</table>

team:

<table>
<thead>
<tr>
<th>Juve</th>
<th>Torino</th>
<th>Del Piero</th>
</tr>
</thead>
</table>

coach:

| Del Piero | Viterbese |
“Repair” of retrieved global db under EDs – Example

Retrieved global database $\mathcal{M}(C)$:

<table>
<thead>
<tr>
<th>player</th>
<th>team</th>
<th>coach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totti 1971</td>
<td>Juve</td>
<td>Del Piero Viterbese</td>
</tr>
<tr>
<td>Buffon 1978</td>
<td>Torino</td>
<td></td>
</tr>
<tr>
<td>Del Piero α Juve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Repair” of team $[T\text{leader}, T\text{name}] \subseteq$ player $[P\text{name}, P\text{team}]$

Violation of coach $[C\text{name}] \cap$ player $[P\text{name}] = \emptyset$

Can we detect such situations without actually constructing $\mathcal{M}(C)$?
Deductive closure of EDs under IDs – Example

Can we saturate (close) the EDs by adding all the EDs that are logical consequences of the EDs and IDs?

Example

From

\[
\text{team}[T\text{leader}, T\text{name}] \subseteq \text{player}[P\text{name}, P\text{team}]
\]
\[
\text{coach}[C\text{name}] \cap \text{player}[P\text{name}] = \emptyset
\]

it follows that

\[
\text{coach}[C\text{name}] \cap \text{team}[T\text{leader}] = \emptyset
\]

This constraint is violated by the retrieved global database \(\mathcal{M}(C) \)
Deductive closure of EDs under IDs

Definition

Derivation rule of EDs under EDs and IDs:

From the ED \(r[i_1, \ldots, i_k] \cap s[j_1, \ldots, j_k] = \emptyset \)
and the ID \(t[\ell_1, \ldots, \ell_k] \subseteq s[j_1, \ldots, j_k] \)
derive the ED \(r[i_1, \ldots, i_k] \cap t[\ell_1, \ldots, \ell_k] = \emptyset \)

Corresponds to a simple application of resolution on the FOL sentences corresponding to EDs and IDs

Theorem

If the set of EDs is closed with respect to the above rule, it contains all EDs that are logical consequences of the initial EDs and IDs
Theorem (ID-ED Separation)

Under IDs and EDs, if \(\mathcal{M}(C) \) satisfies all EDs derived from the IDs and the original EDs then the EDs can be ignored wrt certain answers of a query.

We obtain a method for query answering in GAV under EDs and IDs:

1. Close the set of EDs with respect to the IDs
2. Verify consistency of \(\mathcal{M}(C) \) with respect to EDs
3. Compute ID-rewrite of the input query
4. Unfold the query computed at the previous step
5. Evaluate the query over the sources

The ED consistency check can be done by suitable CQs.
Query answering in GAV under IDs, KDs, and EDs

Theorem (ID-KD-ED Separation)

Under KDs, NKCIDs, and EDs, if $M(C)$ satisfies all the KDs and satisfies all EDs derived from the IDs and the original EDs then the KDs and EDs can be ignored wrt certain answers of a query.

We obtain a method for query answering in GAV under KDs, NKCIDs, and EDs:

1. Close the set of EDs with respect to the IDs
2. Verify consistency of $M(C)$ with respect to KDs and EDs
3. Compute ID-rewrite of the input query
4. Unfold the query computed at the previous step
5. Evaluate the query over the sources
Query answ. in GAV under IDs, KDs and EDs – Complexity

Note:

1. Closing the set of EDs wrt the IDs is independent of the data
2. Consistency of $\mathcal{M}(\mathcal{C})$ wrt KDs and EDs can be verified through suitable queries over the source database \mathcal{C}

Theorem (Lembo & Rosati, 2004)

Answering conjunctive queries in GAV systems under KDs, NKCIDs and EDs is in PTime in data complexity (actually in LogSpace)
Outline

1. Query answering in GAV without constraints
 - Retrieved global database
 - Query answering via unfolding
 - Universal solutions

2. Query answering in (G)LAV without constraints
 - (G)LAV and incompleteness
 - Approaches to query answering in (G)LAV
 - (G)LAV: Direct methods (aka view-based query answering)
 - (G)LAV: Query answering by (view-based) query rewriting
We consider a data integration system $\mathcal{I} = \langle G, S, M \rangle$ where

- G is a global schema with constraints
- M is a set of LAV mappings, whose assertions have the form $\phi_S \rightsquigarrow \phi_G$ and are interpreted as

$$\forall \vec{x}. \phi_S(\vec{x}) \rightarrow \phi_G(\vec{x})$$

where ϕ_S is a conjunctive query over S, and ϕ_G is a conjunctive query over G

Basic observation: Since G does have constraints, the canonical retrieved global database $M(C) \downarrow$ may not be legal for G
Given a source db C, a global db B (over Δ) satisfies \mathcal{I} relative to C if

1. it is legal wrt the global schema, i.e., it satisfies the ICs
2. it satisfies the mapping, i.e., B is a superset of the canonical retrieved global database $M(C) \downarrow$ (sound mappings)

Recall:

- $\mathcal{M}(C)$ is obtained by evaluating, for each mapping assertion $\phi_S \hookrightarrow \phi_G$, the query ϕ_S over C, and using the obtained tuples to populate the global relations according to ϕ_G, using fresh constants for existentially quantified elements
- We are interested in certain answers to a query, i.e., those that hold for all global databases that satisfy \mathcal{I} relative to C
(G)LAV data integration systems with constraints

<table>
<thead>
<tr>
<th>Constraints in G</th>
<th>Type of mapping</th>
<th>Incompleteness</th>
<th>Inconsistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>GAV</td>
<td>yes / no</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>(G)LAV</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>IDs</td>
<td>GAV</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>KDs</td>
<td>GAV</td>
<td>yes / no</td>
<td>yes</td>
</tr>
<tr>
<td>IDs + KDs</td>
<td>GAV</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>IDs</td>
<td>(G)LAV</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>KDs</td>
<td>(G)LAV</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>IDs + KDs</td>
<td>GAV</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
(G)LAV with constr. – Incompleteness and inconsistency
Under IDs only, we can exploit the previous results for GAV also for (G)LAV, by turning the (G)LAV mappings into GAV mappings:

- We transform a (G)LAV integration system $\mathcal{I} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$ with IDs only into a GAV system $\mathcal{I}' = \langle \mathcal{G}', \mathcal{S}, \mathcal{M}' \rangle$

- With respect to \mathcal{I}, the transformed system \mathcal{I}' contains auxiliary IDs and auxiliary global relation symbols

- The transformation is query-preserving:

For every conjunctive query q and for every source database \mathcal{C}, the certain answers to q wrt \mathcal{I} and \mathcal{C} are equal to the certain answers to q wrt \mathcal{I}' and \mathcal{C}
Transforming LAV into GAV – Example

Initial LAV mappings:
\[s(x, y) \sim \{ (x, y) \mid r_1(x, z), r_2(y, w) \} \]
\[t(x, y) \sim \{ (x, y) \mid r_1(x, z), r_3(y, x) \} \]

We introduce two new global relations for each mapping assertion:
\[s_i/2, s_e/4, \] and \[t_i/2, t_e/3 \]

Transformed GAV mappings:
\[\{ (x, y) \mid s(x, y) \} \sim s_i(x, y) \]
\[\{ (x, y) \mid t(x, y) \} \sim t_i(x, y) \]

Additional IDs generated by the transformation:
\[s_i[1, 2] \subseteq s_e[1, 2] \]
\[t_i[1, 2] \subseteq t_e[1, 2] \]
\[s_e[1, 3] \subseteq r_1[1, 2] \]
\[t_e[1, 3] \subseteq r_1[1, 2] \]
\[s_e[2, 4] \subseteq r_2[1, 2] \]
\[t_e[2, 1] \subseteq r_3[1, 2] \]
Query answering in (G)LAV systems under IDs

Method for query answering in a (G)LAV system \mathcal{I} with IDs:

1. Transform \mathcal{I} into a GAV system \mathcal{I}'

2. Apply the query answering method for GAV systems under IDs (The unfolding step must take into account the presence of auxiliary global symbols)

Theorem

Answering conjunctive queries in (G)LAV systems under IDs is in \(\text{PTime} \) in data complexity (actually in \(\text{LogSpace} \))
What happens if we have also EDs in the global schema?

- The above transformation of (G)LAV into GAV is still correct in the presence of EDs
- It is thus possible to first turn the (G)LAV system into a GAV one and then compute query answering in the transformed system
- The addition of EDs is completely modular (we just need to add auxiliary steps in the query answering technique)
Method for query answering in a (G)LAV system \mathcal{I} with IDs and EDs:

1. Transform \mathcal{I} into a GAV system \mathcal{I}'

2. Apply the query answering method for GAV systems under IDs and EDs
 (The unfolding step must take into account the presence of auxiliary global symbols)

Theorem

Answering conjunctive queries in (G)LAV systems under IDs end Eds is in PTime in data complexity (actually in LogSpace)
We consider a (G)LAV system with only KDs in the global schema:

- The transformation of (G)LAV into GAV is still correct in the presence of KDs.
- More precisely, starting from a (G)LAV system \mathcal{I} with KDs, we obtain a GAV system \mathcal{I}' with KDs and IDs.
- But in general, \mathcal{I}' is such that the IDs added by the transformation are key-conflicting IDs (i.e., these IDs are not NKCIDs), and hence the KDs are in general not separable.

Therefore, it is not possible to apply the query answering method for (G)LAV systems under separable KDs and IDs.

Question: Can we find some analogous query answering method based on query rewriting?
(G)LAV systems under KDs – A negative result

Problem: KDs and LAV mappings derive new equality-generating dependencies (not simple KDs)

Theorem (Duschka & al., 1998)

Given a LAV data integration system \mathcal{I} with KDs in the global schema and a conjunctive query q, in general there does not exist a first-order query rew such that $\text{rew}^C = \text{cert}(q, \mathcal{I}, C)$ for every source database C

In other words, in LAV with KDs, conjunctive queries are not first-order rewritable, and one would need to resort to more powerful relational query languages (e.g., Datalog)
Can query answering in integration systems be performed by first-order (UCQ) rewriting?

- GAV with IDs + EDs: yes
- GAV with IDs + KDs + EDs: only if KDs and IDs are separable
- LAV with IDs + EDs: yes
- LAV with KDs: no
Data integration with constraints – Complexity results

<table>
<thead>
<tr>
<th>EDs</th>
<th>KDs</th>
<th>IDs</th>
<th>Data/Combined complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td>general</td>
<td>PTIME/PSPACE</td>
</tr>
<tr>
<td>yes-no</td>
<td>yes</td>
<td>no</td>
<td>PTIME/NP</td>
</tr>
<tr>
<td>yes</td>
<td>yes-no</td>
<td>no</td>
<td>PTIME/NP</td>
</tr>
<tr>
<td>yes-no</td>
<td>yes</td>
<td>NKC</td>
<td>PTIME/PSPACE</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>general</td>
<td>PTIME/PSPACE</td>
</tr>
<tr>
<td>yes-no</td>
<td>yes</td>
<td>1KC</td>
<td>undecidable</td>
</tr>
<tr>
<td>yes-no</td>
<td>yes</td>
<td>general</td>
<td>undecidable</td>
</tr>
</tbody>
</table>