Schema Mappings
Data Exchange
&
Metadata Management

Phokion G. Kolaitis
IBM Almaden Research Center

joint work with

Ronald Fagin Renée J. Miller Lucian Popa Wang-Chiew Tan
IBM Almaden U. Toronto IBM Almaden UC Santa Cruz
The Data Interoperability Problem

- Data may reside
 - at several different sites
 - in several different formats (relational, XML, …).

- Two different, but related, facets of data interoperability:
 - **Data Integration** (aka **Data Federation**):
 - **Data Exchange** (aka **Data Translation**):
Data Integration

Query heterogeneous data in different sources via a virtual global schema

Sources

Global Schema

query Q
Data Exchange

Transform data structured under a source schema into data structured under a different target schema.
Data Exchange

Data Exchange is an old, but recurrent, database problem

- Phil Bernstein – 2003
 “Data exchange is the oldest database problem”

- EXPRESS: IBM San Jose Research Lab – 1977
 EXtraction, Processing, and REStructuring System for transforming data between hierarchical databases.

- Data Exchange underlies:
 - Data Warehousing, ETL (Extract-Transform-Load) tasks;
 - XML Publishing, XML Storage, …
Foundations of Data Interoperability

Theoretical Aspects of Data Interoperability
Develop a conceptual framework for formulating and studying fundamental problems in data interoperability:

- Semantics of data integration & data exchange
- Algorithms for data exchange
- Complexity of query answering
Outline of the Talk

- Schema Mappings and Data Exchange
- Solutions in Data Exchange
 - Universal Solutions
 - The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing Schema Mappings
Schema Mappings

- Schema mappings: high-level, declarative assertions that specify the relationship between two schemas.

- Ideally, schema mappings should be
 - expressive enough to specify data interoperability tasks;
 - simple enough to be efficiently manipulated by tools.

- Schema mappings constitute the essential building blocks in formalizing data integration and data exchange.

- Schema mappings play a prominent role in Bernstein’s metadata management framework.
Schema Mappings & Data Exchange

- **Schema Mapping** $M = (S, T, \Sigma)$
 - *Source* schema S, *Target* schema T
 - High-level, declarative assertions Σ that specify the relationship between S and T.

- **Data Exchange** via the schema mapping $M = (S, T, \Sigma)$
 Transform a given *source* instance I to a *target* instance J, so that $<I, J>$ satisfy the specifications Σ of M.

Definition: Schema Mapping \(M = (S, T, \Sigma) \)

If \(I \) is a source instance, then a solution for \(I \) is a target instance \(J \) such that \(<I, J>\) satisfy \(\Sigma \).

Fact: In general, for a given source instance \(I \),

- No solution for \(I \) may exist
- Multiple solutions for \(I \) may exist; in fact, infinitely many solutions for \(I \) may exist.
Definition: Schema Mapping \(M = (S, T, \Sigma) \)

- The existence-of-solutions problem \(\text{Sol}(M) \): (decision problem)
 Given a source instance \(I \), is there a solution \(J \) for \(I \)?

- The data exchange problem associated with \(M \): (function problem)
 Given a source instance \(I \), construct a solution \(J \) for \(I \), provided a solution exists.
Question: How are schema mappings specified?

Answer: Use logic. In particular, it is natural to try to use first-order logic as a specification language for schema mappings.

Fact: There is a fixed first-order sentence specifying a schema mapping M^* such that $Sol(M^*)$ is undecidable.

Hence, we need to restrict ourselves to well-behaved fragments of first-order logic.
Embedded Implicational Dependencies

- **Dependency Theory**: extensive study of constraints in relational databases in the 1970s and 1980s.

- **Embedded Implicational Dependencies**: Fagin, Beeri-Vardi, …
 Class of constraints with a balance between high expressive power and good algorithmic properties:
 - **Tuple-generating dependencies** (tgds)
 Inclusion and multi-valued dependencies are a special case.
 - **Equality-generating dependencies** (egds)
 Functional dependencies are a special case.
Data Exchange with Tgds and Egds

- Joint work with R. Fagin, R.J. Miller, and L. Popa

- Studied data exchange between relational schemas for schema mappings specified by
 - Source-to-target tgds
 - Target tgds
 - Target egds
The relationship between source and target is given by formulas of first-order logic, called

Source-to-Target Tuple Generating Dependencies (s-t tgds)

$$ \varphi(x) \rightarrow \exists y \, \psi(x, y) $$, where

- $$ \varphi(x) $$ is a conjunction of atoms over the source;
- $$ \psi(x, y) $$ is a conjunction of atoms over the target.

Example:

$$ (\text{Student}(s) \land \text{Enrolls}(s,c)) \rightarrow \exists t \, \exists g \, (\text{Teaches}(t,c) \land \text{Grade}(s,c,g)) $$
s-t tgds assert that:
some SPJ source query is \textit{contained} in some other SPJ target query

\[(\text{Student } (s) \land \text{Enrolls}(s,c)) \rightarrow \exists t \exists g \ (\text{Teaches}(t,c) \land \text{Grade}(s,c,g))\]

s-t tgds generalize the main specifications used in data integration:
- They generalize LAV (\textit{local-as-view}) specifications:
 \[P(x) \rightarrow \exists y \ \psi(x, y), \text{ where } P \text{ is a source schema.}\]
- They generalize GAV (\textit{global-as-view}) specifications:
 \[\varphi(x) \rightarrow R(x), \text{ where } R \text{ is a target schema}\]
- At present, most commercial II systems support GAV only.
In addition to source-to-target dependencies, we also consider target dependencies:

- **Target Tgds**: $\varphi_T(x) \rightarrow \exists y \psi_T(x, y)$

 Dept (did, dname, mgr_id, mgr_name) \rightarrow Mgr (mgr_id, did)
 (a target inclusion dependency constraint)

- **Target Equality Generating Dependencies (egds):**

 $\varphi_T(x) \rightarrow (x_1=x_2)$

 Mgr (e, d) \land Mgr (e, d) \rightarrow (d = d)
 (a target key constraint)
Data Exchange Framework

\[M = (S, T, \Sigma_{st}, \Sigma_t) \]

- \(\Sigma_{st} \) is a set of source-to-target tgds
- \(\Sigma_t \) is a set of target tgds and target egds
Underspecification in Data Exchange

- **Fact:** Given a source instance, multiple solutions may exist.

- **Example:**
 Source relation $E(A,B)$, target relation $H(A,B)$
 \[\Sigma: \quad E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y)) \]
 Source instance $I = \{E(a,b)\}$
 Solutions: *Infinitely* many solutions exist
 - $J_1 = \{H(a,b), H(b,b)\}$
 - $J_2 = \{H(a,a), H(a,b)\}$
 - $J_3 = \{H(a,X), H(X,b)\}$
 - $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$
 - $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$

 constants:
 a, b, ...

 variables (labelled nulls):
 X, Y, ...
Main issues in data exchange

For a given source instance, there may be multiple target instances satisfying the specifications of the schema mapping. Thus,

- When more than one solution exist, which solutions are “better” than others?
- How do we compute a “best” solution?
- In other words, what is the “right” semantics of data exchange?
We introduced the notion of universal solutions as the “best” solutions in data exchange.

- By definition, a solution is universal if it has homomorphisms to all other solutions (thus, it is a “most general” solution).
- Constants: entries in source instances
- Variables (labeled nulls): other entries in target instances
- Homomorphism $h: J_1 \rightarrow J_2$ between target instances:
 - $h(c) = c$, for constant c
 - If $P(a_1, \ldots, a_m)$ is in J_1, then $P(h(a_1), \ldots, h(a_m))$ is in J_2
Universal Solutions in Data Exchange

Universal Solution

Homomorphisms

Solutions

Schema \(S \)

Schema \(T \)

\(\Sigma \)

I

J

J_1

J_2

J_3

h_1

h_2

h_3
Example - continued

Source relation $S(A,B)$, target relation $T(A,B)$

$\Sigma : E(x,y) \rightarrow \exists z (H(x,z) \land H(z,y))$

Source instance $I = \{H(a,b)\}$

Solutions: Infinitely many solutions exist

- $J_1 = \{H(a,b), H(b,b)\}$ is **not** universal
- $J_2 = \{H(a,a), H(a,b)\}$ is **not** universal
- $J_3 = \{H(a,X), H(X,b)\}$ is universal
- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$ is universal
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is **not** universal
Universal solutions are analogous to most general unifiers in logic programming.

Uniqueness up to homomorphic equivalence:
If J and J’ are universal for I, then they are homomorphically equivalent.

Representation of the entire space of solutions:
Assume that J is universal for I, and J’ is universal for I’. Then the following are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent.
Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:
- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a *weakly acyclic set* of target tgds with a set of target egds.

Then:
- Universal solutions exist if and only if solutions exist.
- $\text{Sol}(M)$, the *existence-of-solutions problem* for M, is in P.
- A *canonical* universal solution (if solutions exist) can be produced in polynomial time using the *chase procedure*.
Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgd's contain as special cases:

- **Sets of full tgd's**
 \[
 \varphi_T(x) \rightarrow \psi_T(x),
 \]
 where \(\varphi_T(x)\) and \(\psi_T(x)\) are conjunctions of target atoms.

Example: \(H(x,z) \land H(z,y) \rightarrow H(x,y) \land C(z)\)

Full tgd's express containment between relational joins.

- **Sets of acyclic inclusion dependencies**
 Large class of dependencies occurring in practice.
Fact: Universal solutions need not be unique.

Question: Is there a “best” universal solution?

Answer: In joint work with R. Fagin and L. Popa, we took a “small is beautiful” approach: There is a smallest universal solution (if solutions exist); hence, the most compact one to materialize.

Definition: The core of an instance J is the smallest subinstance J' that is homomorphically equivalent to J.

Fact:
- Every finite relational structure has a core.
- The core is unique up to isomorphism.
The Core of a Structure

Definition: J' is the core of J if

- $J' \supseteq J$
- there is a hom. $h: J \rightarrow J'$
- there is no hom. $g: J \rightarrow J''$, where $J'' \supseteq J'$.

$J' = \text{core}(J)$
The Core of a Structure

Definition: J' is the core of J if

- $J' \sqsubseteq J$
- there is a hom. $h: J \rightarrow J'$
- there is no hom. $g: J \rightarrow J''$, where $J'' \sqsubseteq J'$.

Example: If a graph G contains a \triangle, then G is 3-colorable if and only if $\text{core}(G) = \triangle$.

Fact: Computing cores of graphs is an NP-hard problem.
Example - continued

Source relation $E(A,B)$, target relation $H(A,B)$

$\Sigma : (E(x,y) \rightarrow \exists z (H(x,z) \land H(z,y))$

Source instance $I = \{E(a,b)\}$.

Solutions: Infinitely many universal solutions exist.

- $J_3 = \{H(a,X), H(X,b)\}$ is the core.

- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$ is universal, but not the core.

- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal.
Core: The smallest universal solution

Theorem (FKP): \(M = (S, T, \Sigma_{st}, \Sigma_t) \) a schema mapping:
- All universal solutions have the same core.
- The core of the universal solutions is the smallest universal solution.
- If every target constraint is an egd, then the core is polynomial-time computable.

Theorem (Gottlob – PODS 2005): \(M = (S, T, \Sigma_{st}, \Sigma_t) \)
If every target constraint is an egd or a full tgd, then the core is polynomial-time computable.
Outline of the Talk

- Schema Mappings and Data Exchange
- Solutions in Data Exchange
 - Universal Solutions
 - The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing Schema Mappings
Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I

$$certain(q, I) = \bigcap \{ q(J): J \text{ is a solution for } I \}.$$

Note: It is the standard semantics in data integration.
Certain Answers Semantics

\[
\text{certain}(q, I) = \bigcap \{ q(J) : J \text{ is a solution for } I \}.
\]
Computing the Certain Answers

Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries over T.

- If I is a source instance and J is a universal solution for I, then

 $$\text{certain}(q, I) = \text{the set of all “null-free” tuples in } q(J).$$

- Hence, $\text{certain}(q, I)$ is computable in time polynomial in $|I|$:
 1. Compute a canonical universal J solution in polynomial time;
 2. Evaluate $q(J)$ and remove tuples with nulls.

Note: This is a data complexity result (M and q are fixed).
Certain Answers via Universal Solutions

$q(J_1)$

$q: \text{union of conjunctive queries}$

$q(J)$

$certain(q,I) = \text{set of null-free tuples of } q(J)$.

universal solution J for I
Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries with inequalities (\(\text{?}\)).

- If q has at most one inequality per conjunct, then $\text{certain}(q, I)$ is computable in time polynomial in $|I|$ using a disjunctive chase.

- If q is has at most two inequalities per conjunct, then $\text{certain}(q, I)$ can be coNP-complete, even if $\Sigma_t = \text{?}$.

Universal Certain Answers

- Alternative semantics of query answering based on universal solutions.
- Certain Answers:
 “Possible Worlds” = Solutions
- Universal Certain Answers:
 “Possible Worlds” = Universal Solutions

Definition: Universal certain answers of a query q over T on I

$$u\text{-}certain(q,I) = \cap \{ q(J) : J \text{ is a universal solution for } I \}.$$

Facts:
- $\text{certain}(q,I) \equiv u\text{-}certain(q,I)$
- $\text{certain}(q,I) = u\text{-}certain(q,I)$, q a union of conjunctive queries
Computing the Universal Certain Answers

Theorem (FKP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:
- Σ_{st} is a set of source-to-target tgds
- Σ_t is a set of target egds and target tgds.

Let q be an existential query over T.
- If I is a source instance and J is a universal solution for I, then
 $$u\text{-certain}(q,I) = \text{the set of all “null-free” tuples in } q(\text{core}(J)).$$

- Hence, $u\text{-certain}(q,I)$ is computable in time polynomial in $|I|$ whenever the core of the universal solutions is polynomial-time computable.

Note: Unions of conjunctive queries with inequalities are a special case of existential queries.
Universal Certain Answers via the Core

$q(J_1)$
$q(J_2)$
$q(J_3)$

$q: existential$

$u\text{-certain}(q,I) = \text{set of null-free tuples of } q(\text{core}(J))$.

universal solution J for I
From Theory to Practice

- Clio/Criollo Project at IBM Almaden managed by Howard Ho.
 - Semi-automatic schema-mapping generation tool;
 - Data exchange system based on schema mappings.

- Universal solutions used as the semantics of data exchange.

- Universal solutions are generated via SQL queries extended with Skolem functions (implementation of chase procedure), provided there are no target constraints.

- Clio/Criollo technology is being exported to WebSphere II.
Some Features of Clio

- Supports nested structures
 - Nested Relational Model
 - Nested Constraints
- Automatic & semi-automatic discovery of attribute correspondence.
- Interactive derivation of schema mappings.
- Performs data exchange
Schema Mappings in Clio

Mapping Generation

Source Schema S

“conforms to”

Data exchange process
(or SQL/XQuery/XSLT)

Target Schema T

“conforms to”
Outline of the Talk

✓ Schema Mappings and Data Exchange

✓ Solutions in Data Exchange
 ✓ Universal Solutions
 ✓ The Core of the Universal Solutions

✓ Query Answering in Data Exchange

■ Composing Schema Mappings
 joint work with R. Fagin, L. Popa, and W.-C. Tan
Managing Schema Mappings

- Schema mappings can be quite complex.

- Methods and tools are needed to manage schema mappings automatically.

- **Metadata Management Framework** – Bernstein 2003
 based on generic schema-mapping operators:
 - Composition operator
 - Inverse operator
 - Merge operator
 -
Composing Schema Mappings

Given $\mathbf{M}_{12} = (\mathbf{S}_1, \mathbf{S}_2, \Sigma_{12})$ and $\mathbf{M}_{23} = (\mathbf{S}_2, \mathbf{S}_3, \Sigma_{23})$, derive a schema mapping $\mathbf{M}_{13} = (\mathbf{S}_1, \mathbf{S}_3, \Sigma_{13})$ that is "equivalent" to the sequence \mathbf{M}_{12} and \mathbf{M}_{23}.

What does it mean for \mathbf{M}_{13} to be "equivalent" to the composition of \mathbf{M}_{12} and \mathbf{M}_{23}?
Earlier Work

- **Metadata Model Management** (Bernstein in CIDR 2003)
 - Composition is one of the fundamental operators
 - However, no precise semantics is given

- **Composing Mappings among Data Sources** (Madhavan & Halevy in VLDB 2003)
 - First to propose a semantics for composition
 - However, their definition is in terms of maintaining the same certain answers relative to a class of queries.
 - Their notion of composition *depends* on the class of queries; it may *not* be unique up to logical equivalence.
Semantics of Composition

- Every schema mapping $M = (S, T, \Sigma)$ defines a binary relationship $\text{Inst}(M)$ between instances:
 $$\text{Inst}(M) = \{ <I,J> | <I,J> \in \Sigma \}.$$

- **Definition: (FKPT)**
 A schema mapping M_{13} is a composition of M_{12} and M_{23} if
 $$\text{Inst}(M_{13}) = \text{Inst}(M_{12}) \circ \text{Inst}(M_{23}),$$
 that is,
 $$<I_1,I_3> \in \Sigma_{13}$$
 if and only if
 there exists I_2 such that $<I_1,I_2> \in \Sigma_{12}$ and $<I_2,I_3> \in \Sigma_{23}.$

- **Note:** Also considered by S. Melnik in his Ph.D. thesis
The Composition of Schema Mappings

Fact: If both $M = (S_1, S_3, \Sigma)$ and $M' = (S_1, S_3, \Sigma')$ are compositions of M_{12} and M_{23}, then Σ and Σ' are logically equivalent. For this reason:

- We say that M (or M') is *the* composition of M_{12} and M_{23}.
- We write $M_{12} \circ M_{23}$ to denote it.

Definition: The composition query of M_{12} and M_{23} is the set $\text{Inst}(M_{12}) \circ \text{Inst}(M_{23})$.
Issues in Composition of Schema Mappings

- The semantics of composition was the first main issue.

Some other key issues:

- Is the language of s-t tgds closed under composition? If M_{12} and M_{23} are specified by finite sets of s-t tgds, is $M_{12} \circ M_{23}$ also specified by a finite set of s-t tgds?

- If not, what is the “right” language for composing schema mappings?
Composition: Expressibility & Complexity

<table>
<thead>
<tr>
<th>(M_{12})</th>
<th>(\Sigma_{12})</th>
<th>(M_{23})</th>
<th>(\Sigma_{23})</th>
<th>(M_{12} \circ M_{23})</th>
<th>(\Sigma_{13})</th>
<th>Composition Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite set of full s-t tgds (\varphi(x) \rightarrow \psi(x))</td>
<td>finite set of s-t tgds (\varphi(x) \rightarrow \exists y \psi(x, y))</td>
<td>finite set of s-t tgds (\varphi(x) \rightarrow \exists y \psi(x, y))</td>
<td>in PTIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>finite set of s-t tgds (\varphi(x) \rightarrow \exists y \psi(x, y))</td>
<td>finite set of (full) s-t tgds (\varphi(x) \rightarrow \exists y \psi(x, y))</td>
<td>may not be definable: by any set of s-t tgds; in FO-logic; in Datalog</td>
<td>in NP; can be NP-complete</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Employee Example

- Σ_{12}:
 - $\text{Emp}(e) \rightarrow \exists m \text{ Rep}(e,m)$

- Σ_{23}:
 - $\text{Rep}(e,m) \rightarrow \text{Mgr}(e,m)$
 - $\text{Rep}(e,e) \rightarrow \text{SelfMgr}(e)$

Theorem: This composition is not definable by any finite set of s-t tgds.

Fact: This composition is definable in a well-behaved fragment of second-order logic, called SO tgds, that extends s-t tgds with Skolem functions.
Employee Example - revisited

Σ_{12}:
- $\forall e \ (\text{Emp}(e) \rightarrow \exists m \ \text{Rep}(e,m))$

Σ_{23}:
- $\forall e \forall m (\text{Rep}(e,m) \rightarrow \text{Mgr}(e,m))$
- $\forall e (\text{Rep}(e,e) \rightarrow \text{SelfMgr}(e))$

Fact: The composition is definable by the SO-tgd

Σ_{13}:
- $\exists f (\forall e (\text{Emp}(e) \rightarrow \text{Mgr}(e,f(e))) \land$
 $\forall e (\text{Emp}(e) \land (e=f(e)) \rightarrow \text{SelfMgr}(e)))$
Definition: Let S be a source schema and T a target schema. A second-order tuple-generating dependency (SO tgd) is a formula of the form:

$$ \exists f_1 \ldots \exists f_m ((\forall x_1 (\phi_1 \rightarrow \psi_1)) \land \ldots \land (\forall x_n (\phi_n \rightarrow \psi_n))), $$

where

- Each f_i is a function symbol.
- Each ϕ_i is a conjunction of atoms from S and equalities of terms.
- Each ψ_i is a conjunction of atoms from T.

Example: $\exists f (\forall e (\text{Emp}(e) \rightarrow \text{Mgr}(e,f(e)) \land \\
\forall e (\text{Emp}(e) \land (e=f(e)) \rightarrow \text{SelfMgr}(e)))$
Composing SO-Tgds and Data Exchange

Theorem (FKPT):

- The composition of two SO-tgds is definable by a SO-tgd.
- There is an algorithm for composing SO-tgds.
- The chase procedure can be extended to schema mappings specified by SO-tgds, so that it produces universal solutions in polynomial time.
- For schema mappings specified by SO-tgds, the certain answers of target conjunctive queries are polynomial-time computable.
Synopsis of Schema Mapping Composition

- s-t tgds are not closed under composition.
- SO-tgds form a well-behaved fragment of second-order logic.
 - SO-tgds are closed under composition; they are a “good” language for composing schema mappings.
 - SO-tgds are “chasable”:
 - Polynomial-time data exchange with universal solutions.
- SO-tgds and the composition algorithm have been incorporated in Criollo’s Mapping Specification Language (MSL).
Related Work and Extensions in this PODS

- G. Gottlob: *Computing Cores for Data Exchange: Algorithms & Practical Solutions*

- A. Nash, Ph. Bernstein, S. Melnik: *Composition of Mappings Given by Embedded Dependencies*

- A. Fuxman, Ph. Kolaitis, R.J. Miller, W.-C. Tan: *Peer Data Exchange*

- M. Arenas & L. Libkin: *XML Data Exchange: Consistency and Query Answering*
"Quelli che s'innamoran di pratica sanza scienza, son come 'l nocchiere ch'entra in navilio sanza timone o bussola, che mai ha certezza dove si vada"

Leonardo da Vinci, 1452-1519

"He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast."
Reduction from 3-Colorability

- Σ_{12}
 - $\forall x \forall y \ (E(x,y) \rightarrow \exists u \exists v \ (C(x,u) \land C(y,v)))$
 - $\forall x \forall y \ (E(x,y) \rightarrow F(x,y))$

- Σ_{23}
 - $\forall x \forall y \forall u \forall v \ (C(x,u) \land C(y,v) \land F(x,y) \rightarrow D(u,v))$

- Let $I_3 = \{ (r,g), (g,r), (b,r), (r,b), (g,b), (b,g) \}$

- Given $G=(V, E)$,
 - let I_1 be the instance over S_1 consisting of the edge relation E of G

- G is 3-colorable iff $<I_1, I_3> \in \text{Inst}(M_{12}) \circ \text{Inst}(M_{23})$

- [Dawar98] showed that 3-colorability is not expressible in $L_{\infty\omega}$
Algorithm Compose(M_{12}, M_{23})

- **Input**: Two schema mappings M_{12} and M_{23}
- **Output**: A schema mapping $M_{13} = M_{12} \circ M_{23}$

Step 1: Split up tgds in Σ_{12} and Σ_{23}
- $C_{12} = \text{Emp}(e) \rightarrow (\text{Mgr1}(e, f(e))$
- $C_{23} =$
 - $\text{Mgr1}(e,m) \rightarrow \text{Mgr}(e,m)$
 - $\text{Mgr1}(e,e) \rightarrow \text{SelfMgr}(e)$

Step 2: Compose C_{12} with C_{23}
- $\chi_1 : \text{Emp}(e_0) \land (e=e_0) \land (m=f(e_0)) \rightarrow \text{Mgr1}(e,m)$
- $\chi_2 : \text{Emp}(e_0) \land (e=e_0) \land (e=f(e_0)) \rightarrow \text{SelfMgr}(e)$

Step 3: Construct M_{13}
- Return $M_{13} = (S_1, S_3, \Sigma_{13})$ where
 - $\Sigma_{13} = \exists f(\exists e_0 \exists e \exists m \chi_1 \land \exists e_0 \exists e \chi_2)$