Course Description – Academic Year 2018/2019

<table>
<thead>
<tr>
<th>Course title</th>
<th>Data Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>73014</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>INF/01</td>
</tr>
<tr>
<td>Degree</td>
<td>Master in Computational Data Science (LM-18)</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>Yes</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>40</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>20</td>
</tr>
<tr>
<td>Attendance</td>
<td>Attendance is not compulsory, but non-attending students have to contact the lecturers at the start of the course to agree on the modalities of the independent study.</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Knowledge of relational databases, as taught in an introductory course at the BSc level. Basic knowledge of first-order logic, as taught in a BSc course in logic or discrete mathematics. Java programming skills for the project part.</td>
</tr>
<tr>
<td>Course page</td>
<td>https://ole.unibz.it/</td>
</tr>
</tbody>
</table>

Specific Educational Objectives

The course belongs to the type "caratterizzanti – discipline informative" in the curriculum "Data Management".

The Data Integration course addresses a variety of problems related to the integration of heterogeneous data sources, that range from structured data (such as relational databases), over semi-structured data (such as data on the Web, and tree- and graph-structured data), to unstructured (textual) data. It overviews foundational techniques for data integration, such as schema mappings, data and schema matching, and query processing in data integration, and does so considering different data representations that go beyond the relational model, such as RDF data, linked open data, and knowledge graphs. Architectures for data integration and data federation and their adoption to build comprehensive data integration solutions are studied. By attending the course, students will also learn how to design and build a data integration system, possibly exploiting existing data access and data federation technologies.

Lecturer

Diego Calvanese
POS 2.07, calvanese@inf.unibz.it, +39 0471 016160

Scientific Sector of Lecturer

ING-INF/05

Teaching Language

English

Office Hours

Announced on the webpage of the lecturer. During the lecture time span, in general Friday 16:00-18:00. Outside of the lecture time span, students are advised to confirm availability by email.

Lecturing Assistant (if any)

LA

Office Hours LA

Announced on the webpage of the lecturer.

List of topics

- Data integration architectures
- Schema mapping
• Data matching
• Heterogeneous and web data
• Data cleaning
• Query processing for data integration

Teaching format
Frontal lectures, exercises, and labs.

Learning outcomes

Knowledge and understanding:
• D1.2 - Understanding of the skills, tools and techniques required for an effective use of data science
• D1.6 - Knowledge of the principles and methods of data curation

Applying knowledge and understanding:
• D2.1 - Practical application and evaluation of tools and techniques in the field of data science
• 2.5 - Ability to apply, evaluate and develop methods and tools for the integration, cleaning, and quality of data
• D2.10 - Application of languages, tools, and methods for the design of information systems and their corresponding software applications for data, process, and organization management

Making judgments
• D3.2 - Ability to autonomously select the documentation (in the form of books, web, magazines, etc.) needed to keep up to date in a given sector

Communication skills
• D4.1 - Ability to use English at an advanced level with particular reference to disciplinary terminology
• D4.3 - Ability to structure and draft scientific and technical documentation

Learning skills
• D5.2 - Ability to autonomously keep oneself up to date with the developments of the most important areas of data science

Assessment

Oral exam and project work. The mark for each part of the exam is 18-30, or insufficient.

The oral exam comprises verification questions, and open questions to test knowledge application skills. It counts for 50% of the total mark.

The project work verifies whether the student is able to apply advanced data integration techniques and technologies taught or presented in the course to solve concrete problems. It is assessed through a final presentation, a demo, and a project report and can be carried out either individually or in a group of 2 students. It is discussed during the oral exam, and it counts for 50% of the total mark.

Assessment language
English

Assessment Typology
Monocratic
Evaluation criteria and criteria for awarding marks

The final mark is computed as the average of the oral exam and the project. The exam is considered passed when both marks are valid, i.e., in the range 18-30. Otherwise, the individual valid mark (if any) is kept for all 3 regular exam sessions, until also all other parts are completed with a valid mark. After the 3 regular exam sessions, all marks become invalid.

Relevant for the oral exam: clarity of answers; ability to recall principles and methods, and deep understanding about the course topics presented in the lectures; skills in applying knowledge to solve exercises about the course topics; skills in critical thinking.

Relevant for the project: skill in applying knowledge in a practical setting; ability to summarize in own words; ability to develop correct solutions for complex problems; ability to write a quality report; ability in presentation; ability to work in teams.

Non-attending students have the same evaluation criteria and requirements for passing the exam as attending students.

Required readings

Required book:

Additional material (slides, notes of the lecturers) will be made available before each lesson.

Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Supplementary readings

Software used

- Ontop system for ontology-based data access developed by the In2Data research group at the Faculty of Computer Science
- Data federation tools