6. Reasoning in Description Logics

Exercise 6.1 Let \mathcal{T} be a TBox consisting of concept inclusions of the form $A_1 \sqsubseteq A_2$ and concept disjointness assertion of the form $A_1 \sqsubseteq \neg A_2$, for atomic concepts A_1 and A_2.

Describe an algorithm for checking concept satisfiability with respect to \mathcal{T}, i.e., whether for some concept A it holds that A is satisfiable with respect to \mathcal{T}.

What is the complexity of the algorithm?

Solution: Let C be the set of atomic concepts appearing in \mathcal{T}. Construct a directed graph $G_\mathcal{T} = (N, E)$ as follows:

- the set of nodes is $N = C \cup \{\neg A \mid A \in C\}$;
- the set of directed edges is $E = \{A_1 \rightarrow A_2, \neg A_2 \rightarrow \neg A_1 \mid A_1 \sqsubseteq A_2 \in \mathcal{T}\} \cup \{A_1 \rightarrow \neg A_2, A_2 \rightarrow \neg A_1 \mid A_1 \sqsubseteq \neg A_2 \in \mathcal{T}\}$.

Then one can show that an atomic concept A is unsatisfiable with respect to \mathcal{T} if and only if there is a path from A to $\neg A$. The algorithm for reachability checking can be done in linear time.

NOTE: the reachability checking problem is in NLOGSPACE.

Exercise 6.2 Consider TBoxes \mathcal{T} consisting of axioms of the forms

\[
B_1 \sqsubseteq B_2, \quad \text{where} \quad B_1, B_2 := A \mid \exists P \mid \exists P^-, \\
R_1 \sqsubseteq R_2, \quad \text{where} \quad R_1, R_2 := P \mid P^-,
\]

where A denotes an atomic concept, and P an atomic role.

- Describe an algorithm for checking concept subsumption with respect to a given \mathcal{T}, i.e., whether for two concepts B_1 and B_2 it holds that $\mathcal{T} \models B_1 \sqsubseteq B_2$.

- Let $\mathcal{A}_0 = \{A_0(a)\}$, for some atomic concept A_0 and individual a, and let \mathcal{T} be a(n arbitrary) TBox of the above form. Can we determine whether $(\mathcal{T}, \mathcal{A}_0)$ is satisfiable?

Solution: Let C be the set of atomic concepts and \mathcal{R} the set of atomic roles appearing in \mathcal{T}. For an atomic or inverse role R, we use R^- to denote P^- if R is an atomic role P, and to denote P if R is an inverse role P^-.

Construct a directed graph $G_\mathcal{T} = (N, E)$ as follows:

- the set of nodes is $N = C \cup \{\exists P \mid P \in \mathcal{R}\} \cup \{\exists P^- \mid P \in \mathcal{R}\}$;
- the set of directed edges is $E = \{B_1 \rightarrow B_2 \mid B_1 \sqsubseteq B_2 \in \mathcal{T}\} \cup \{\exists R_1 \rightarrow \exists R_2 \mid R_1 \sqsubseteq R_2 \in \mathcal{T}\} \cup \{\exists R_1^- \rightarrow \exists R_2^- \mid R_1 \sqsubseteq R_2 \in \mathcal{T}\}$.

Then one can show that $\mathcal{T} \models B_1 \sqsubseteq B_2$ if and only if there is a path from B_1 to B_2 in $G_\mathcal{T}$.

The TBox \mathcal{T} does not contain assertions involving negation. Hence, every knowledge base having \mathcal{T} as TBox and an arbitrary ABox (including \mathcal{A}_0) is satisfiable.

Exercise 6.3 Show that concept satisfiability in \mathcal{ALC} is NP-hard.

Hint: show the claim by reduction from SAT.

Solution: We provide a (straightforward) reduction φ from SAT to concept satisfiability in \mathcal{ALC}. Given a propositional formula f, we obtain the \mathcal{ALC} concept $\varphi(f)$ by simply viewing every propositional variable in f as an atomic concept, and replacing in f every occurrence of '\forall' with '\wedge', and every occurrence of '\exists' with '\vee'. Notice that $\varphi(f)$ is an \mathcal{ALC} concept not containing roles.

We now show that $\varphi(f)$ is satisfiable if and only if f is so.

For the “if” direction, let f be satisfiable, and τ a truth value assignment such that $f\tau$ evaluates to true. We construct an interpretation $(\Delta^{\varphi}, \tau^\varphi)$ of $\varphi(f)$ as follows: $\Delta^{\varphi} = \{\sigma\}$, and for an atomic concept A, we set...
\[A^{T_f} = \{ o \} \text{ if } A_T = \text{true}, \text{ and } A^{T_f} = \{ \} \text{ if } A_T = \text{false}. \] It is easy to show, by induction on the structure of \(f \), that \(\varphi(f)^{T_f} = \{ o \} \), hence \(\varphi(f) \) is satisfiable.

For the “only-if” direction, let \(\varphi(f) \) be satisfiable, \(I \) an interpretation such that \((\varphi(f))^I \neq \emptyset \), and \(o \in (\varphi(f))^I \). We construct a truth value assignment \(\tau^f \) for \(f \) as follows: for a propositional variable \(A \) in \(f \), we set \(A_{\tau} = \text{true} \) if \(o \in A^I \), and \(A_{\tau} = \text{false} \) if \(o \notin A^I \). It is easy to show, by induction on the structure of \(f \), that \(f_{\tau^f} = \text{true} \), hence \(f \) is satisfiable. This concludes the proof.

Exercise 6.4 Let \(q_n \), for \(n \geq 1 \), be a Boolean conjunctive query with \(n + 1 \) existential variables of the form \(\exists x_0, \ldots, x_n. P(x_0, x_1) \land P(x_1, x_2) \land \cdots \land P(x_n-1, x_n) \). Given \(n \geq 1 \):

1. construct an ALC KB \(K_n \) such that \(K_n \models q_n \).
2. construct an ALC KB \(K'_{2n} \) of size polynomial in \(n \) such that \(K'_{2n} \models q_{2n} \) and \(K'_{2n} \not\models q_{2n+1} \).

Hint: \(K'_{2n} \) “implements” a binary counter by means of \(n \) atomic concepts representing the bits of the counter, and such that the models of \(K'_{2n} \) contain a \(P \)-chain of objects of length \(2^n \).

Solution:

1. There are many possible ways to construct \(K_n = \langle T_n, A_n \rangle \). We provide a few alternatives:
 - (a) \(T_n = \emptyset \) and \(A_n = \{ P(a, a) \} \);
 - (b) \(T_n = \{ A \subseteq \exists P.A \} \text{ and } A_n = \{ A(c) \} \);
 - (c) \(T_n = \emptyset \) and \(A_n = \{ P(c_0, c_1), P(c_1, c_2), \ldots, P(c_{n-1}, c_n) \} \);
 - (d) \(T_n = \{ A \subseteq \exists P.\exists P. \cdots \exists P. \exists P \} \text{ and } A_n = \{ A(c) \} \), where the number of (nested) existential restrictions in the right-hand side of the concept inclusion in \(T_n \) is equal to \(n \).
 - (e) \(T_n = \{ A \subseteq \exists P.A_1, A_1 \subseteq \exists P.A_2, \ldots, A_{n-2} \subseteq \exists P.A_{n-1}, A_{n-1} \subseteq \exists P \} \text{ and } A_n = \{ A(c) \} \).

Notice that in alternatives (a) and (b), \(T_n \) and \(A_n \) do not depend on \(n \), and work for every possible value \(n \geq 1 \).

2. We introduce \(2n \) concepts \(B_i, \overline{B}_i, 1 \leq i \leq n \). Intuitively, \(B_i(a) \) (resp. \(\overline{B}(a) \)) says that the \(i \)-th bit of the number \(a \) is 1 (resp. 0). \(K'_{2n} = \langle T_n, A_n \rangle \), where \(T_n \) consists of the following axioms:

\[
\begin{align*}
B_i & \subseteq \exists P.\top, & 1 \leq i \leq n \\
\overline{B}_i & \subseteq \forall P.B_i \\
B_1 \sqcap \cdots \sqcap B_i \sqcap \overline{B}_{i+1} & \subseteq \forall P_i(B_1 \sqcap \cdots \sqcap B_i \sqcap B_{i+1}) & 1 \leq i \leq n - 1 \\
\overline{B}_i \sqcap \overline{B}_j & \subseteq \forall P.B_j & 1 \leq i < j \leq n \\
\overline{B}_i \sqcap B_j & \subseteq \forall P.B_j & 1 \leq i < j \leq n
\end{align*}
\]

and \(A_n = \{ B_1(a), \ldots, B_n(a) \} \)