Running time (or time complexity) of a T.M.

A T.M. has time complexity $T(n)$ if it halts in at most $T(n)$ steps (accepting or not) for all input strings of length n.

Polynomial time: $T(n) = O(n^c)$ for some fixed c (fixed means independent from n, i.e. the input size)

Examples:

- $O(n^2)$
- $O(n \cdot \log n)$
- $O(n^{3.14})$
- $O(n \cdot \log n)$
- $O(2^n)$

Complexity theory considers tractable all problems with poly-time algorithms.

Motivations:

1) robustness wrt the computation model

 All general computation models can simulate each other in poly-time \Rightarrow they define the same class of tractable problems.

2) robustness wrt combining algorithms

 ($\text{e polynomial of } \text{e polynomial is still } \text{e polynomial}$)

3) going from polynomial to non-polynomial is drastic also in practice (e.g. compare $10 \cdot n^2$ with $0.1 \cdot 2^n$, when n grows)
4. Most practically used algorithms that are polynomial are so with a low coefficient (i.e. \(T(n) = O(n^c) \), with \(c \) typically \(\leq 3 \).

Time complexity classes:

- Definition: \(P = \{ L \mid L = L(M) \text{ for some poly-time DTM } M \} \)
- \(NP = \{ L \mid L = L(N) \text{ for some poly-time NTM } N \} \)

Note: both DTMs and NTMs must be halting T.M.s.

From the definition we have immediately: \(P \subseteq NP \) (every NTM is also a DTM).

Note: being in \(P \) corresponds to the intuition that the problem can be solved efficiently.

Instead, being in \(NP \) means intuitively that, given a solution, we can check efficiently whether it is correct.

Satisfiability:

- Boolean formulae: operands: \(x_1, \ldots, x_n \)
 - operators: \(\land, \lor, \lnot \)
 - formula: \(F(x_1, \ldots, x_n) \)

Satisfiability problem: given a boolean formula \(F(x_1, \ldots, x_n) \), is there a truth assignment (i.e., an assignment of true/false values) for \(x_1, \ldots, x_n \) that satisfies \(F \) (i.e., makes \(F \) evaluate to true)?
Example: \(F(x_1, x_2) = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \) is satisfiable: \(x_1 = 1, x_2 = 1 \)
\(F(x_1, x_2) = x_1 \land (\neg x_1 \lor x_2) \land \neg x_2 \)

is not satisfiable.

We first show how we can convert it to a language problem:

- We must encode formulas as strings
- \(\Sigma = \{ \land, \lor, \neg, (,), x, 0, 1 \} \)
- Variable \(x_i \): \(x(i)-i\text{-binary} \)
- E.g. \(x_5 \) is encoded as \(101 \)

\(\Rightarrow \) we obtain that \(F(x_1, \ldots, x_n) \) can be encoded as a string over \(\Sigma \).

\(L_{\text{SAT}} = \{ w \mid w \text{ encodes a satisfiable formula} \} \)

Theorem: \(L_{\text{SAT}} \in \text{NP} \) (i.e., satisfiability is in \(\text{NP} \))

Proof:
It suffices to show a poly-time NTM \(N \) s.t. \(L(N) = L_{\text{SAT}} \)

\(N \) runs in two steps:

1) "guess" a truth assignment \(F \) for \(x_1, \ldots, x_n \)
2) evaluate \(F \) on truth assignment and whether it has value true.

We have: \(F \text{ satisfiable} \iff \exists \text{ satisfying TA} \)

\(\Rightarrow N \) has accepting \(\text{execution} \)

Running time: step 1) \(O(m) \)
step 2) \(O(n^2) \) with multiple steps \(\Rightarrow O(n^4) \)
Note: All decision problems can be converted to language problems, by encoding the input as a string.

We know that \(L_{SAT} \subseteq NP \), but we do not know whether \(L_{SAT} \subsetneq P \):

- we cannot exploit the conversion \(NTM \rightarrow DTM \), since it causes an exponential blowup in running time.
- Under the standard \(NTM \rightarrow DTM \) conversion, the DTM will have to try all possible truth assignments \((2^k) \).

In fact: open whether \(L_{SAT} \subsetneq P \).

Special case of SAT: \(CSAT \):

- Conjunctive Normal Form:
 - Note: we use + for \(\lor \)
 - and \(\cdot \) for \(\land \)

- Literal: variable \(x_i \) or its negation \(\neg x_i \)
- Clause: \(\lor \) of literals: \(C_j = x_i + \neg x_i \)
- CNF formula: \(\land \) of clauses: \(F = C_1 \cdot \ldots \cdot C_m \)

Thus \(F = \prod_{j=1}^{m} C_j \) with \(C_j = \sum_{a=1}^{n} l_{ja} \).

CSAT problem: given a CNF formula \(F \), decide whether \(F \) is satisfiable.

Since \(SAT \subseteq NP \), we have also \(CSAT \subseteq NP \).
\textbf{CNF formula:} each clause has exactly \(k \) literals.

1-SAT: \((\bar{x}_1) \cdot (\bar{x}_2) \cdot (x_3)\)

2-SAT: \((x_4 + \bar{x}_2) \cdot (\bar{x}_1 + x_2)\)

3-SAT:

\textbf{Note:} 1-SAT \in P (trivial)

2-SAT \in P (not so easy - one graph reachability)

3-SAT \in P is still open

There are many (thousands) problems like SAT and CSAT that can be easily established to be in \(\text{NP} \) as follows:

\textbf{Step 1:} "guess" some solution \(S \)

\textbf{Step 2:} verify that \(S \) is a correct solution

\textbf{Note:} \text{Step 1} exploits non-determinism, and is clearly polynomial (running time of a \(\text{NTM} \))

\text{Step 2}, for the problem to be in \(\text{NP} \), must be carried out deterministically in \(\text{poly-time} \) (polynomial verifiability)

\textbf{Examples:}

- Traveling salesman problem (TSP)

 \text{input: graph } G = (V,E) \text{ with edge lengths } d(u,v)
 \text{integer } k

 \text{problem: does } G \text{ have a tour (visiting each node exactly once) of length } \leq k \text{?}

\text{TSP } \in \text{NP}

\text{Step 1: guess a tour}

\text{Step 2: check that length of tour is } \leq k
- Clique: input: graph $G = (V, E)$
 - integer k
 problem: does the graph have a clique of size k?
 (a clique is a subgraph of G in which each pair of nodes is connected by an edge)

- Knapsack: input: set of items, each with an integer weight
 - capacity k of a knapsack
 problem: is there a subset of the items whose total weight matches the capacity k?

This property explains why so many practical problems are NP:
- problems ask for the design of mathematical objects
 (paths, truth assignments, solutions of equations, VLSI routes)
- sometimes we look for the best solution (or a solution that
 matches some condition) that matches the specification
- the solution is of small (polynomial) size, otherwise it
 would be useless
- it is simple (poly-time) to check whether it matches the spec.
 But, there are exponentially many possible solutions

If we had $P = NP$, all these problems would have efficient
(poly-time) solutions.

But we currently believe that $P \neq NP$.

Assuming $P \neq NP$, how do we determine which problems of NP
are not in P (i.e., we know they don't have an efficient
algorithm)?
NP-completeness

Key idea: we define NP-completeness in such a way that if we show that an NP-complete problem is in P, then all problems in NP would be in P, (i.e., we would have P = NP)

It follows: assuming P ≠ NP, an NP-complete problem cannot be in P

Poly-time reduction:
Problem \(\mathcal{X} \) reduces to problem \(\mathcal{Y} \) in poly-time \((\mathcal{X} \leq_{\text{poly}} \mathcal{Y})\)
if there is a function \(R \) (the poly-time reduction) s.t.
1) \(w \in \mathcal{L}_X \iff R(w) \in \mathcal{L}_Y \)
2) \(R \) is computable by a poly-time DTM
\((\mathcal{L}_X \) is the language encoding of problem \(\mathcal{X} \))

Theorem: \(\mathcal{X} \leq_{\text{poly}} \mathcal{Y} \) and \(\mathcal{Y} \in P \implies \mathcal{X} \in P \)

Proof: Let \(M_R \) be a poly-time DTM for \(R \)
\(M_Y \) \(\rightarrow \) \(\mathcal{Y} \)

We construct a DTM \(M_x \) for \(\mathcal{X} \) as follows

\[
\begin{align*}
\text{Input: } w & \quad \rightarrow \quad \text{output } w, |w| = m \\
M_R & \quad \rightarrow \quad R(w) \\
M_Y & \quad \rightarrow \quad \begin{cases}
\text{yes} & \text{if } w \in \mathcal{L}_x \\
\text{no} & \text{if } w \notin \mathcal{L}_x
\end{cases}
\end{align*}
\]

Running time of \(M_x \):
Suppose \(M_R \) runs in time \(T_R(m) \leq m^a \)
\(M_Y \) \(\rightarrow \) \(\mathcal{Y} \) in time \(T_Y(m) \leq m^b \)

1/12/2015
Let $|w| = n$

Then $|R(w)| \leq n^a$

$\Rightarrow M_x$ runs in time

$$T_x(n) \leq T_R(m) + T_y(T_R(m)) = n^a + (n^a)^b = O(n^{a+b})$$

$q.e.d.$

Corollary: $X \preceq_{p} Y$ and $X \notin P \Rightarrow Y \notin P$

Definition: Problem Y (or language L_Y) is NP-hard if

$\forall X \in NP \text{ we have } X \preceq_{p} Y$

Intuitively: an NP-hard problem is at least as hard as any problem in NP

Immediate: Y is NP-hard and $Y \notin P \Rightarrow P = NP$

Definition: Y is NP-complete if

1) $Y \in NP$ and
2) Y is NP-hard

Intuitively: NP-complete problems are the hardest problems in NP.

If one of them is in P, then all problems in NP are in P.

Hence: NP-completeness is a strong evidence of intractability.
Note: relationship between P, NPC, and NP:

either $P = NP$ or $P \neq NP$

in this case we know there are problems in NP that are neither in P nor NPC
(proof is complicated)

How do we prove problems to be NP-complete?

Theorem: X is NP-hard and $X \preceq_{poly} Y \implies Y$ is NP-hard

Proof:

$NP \preceq_{poly} X \preceq_{poly} Y$

But, to exploit this result, we need a first NP-hard problem:

Cook's theorem: $CSAT$ is NP-hard

Proof idea: we must show: $V \leq_{NP} L \leq_{poly} L \text{ CSAT}$

Fix $L \in NP$ and let M_L be a poly-time NTM for L.

We must show a poly-time reduction R_L:

input: a string w

output: CNF formula $F = R_L(w)$ such that $w \in L(M_L) \iff F$ is satisfiable

Idea: F encodes the computation of M_L on w. Let $P_L(m)$ be the (polynomial) running time of M_L.
Suppose \(w \in L(M_L) \) and \(|w| = m \).

Then there exists a sequence of IDs of \(M_L \):
\[
ID_0 \rightarrow ID_1 \rightarrow \ldots \rightarrow ID_T
\]
with \(ID_0 = \sigma_0^m \)

\(ID_T \) is an accepting ID (i.e. \(M_L \) is in a final state).

We assume that \(T = P(m) \) by adding
\[
ID_{T+1}, ID_{T+2}, \ldots, ID_{P(m)} \text{ same as } ID_T
\]

Idea: encode computation as matrix \(X \)

\[
\begin{array}{cccc|ccc|ccc|ccc}
0 & q_0 & q_1 & q_2 & q_3 & \ldots & q_m & \mathbb{B} & \mathbb{B} & \ldots & \mathbb{B} & \mathbb{B} \\
1 & q_1 & q_2 & q_3 & \ldots & q_m & \mathbb{B} & \mathbb{B} & \ldots & \mathbb{B} & \mathbb{B} \\
2 & q_1 & q_2 & q_3 & \ldots & q_m & \mathbb{B} & \mathbb{B} & \ldots & \mathbb{B} & \mathbb{B} \\
\vdots & \vdots \\
P(m) & q_1 & q_2 & q_3 & \ldots & q_m & l_1, l_2, l_3 & q_x & \mathbb{B} \end{array}
\]

\(M \) cannot use more than \(P(m) \) cells

\(\mathbb{B} \) : contents of tape cell \(i \) in \(ID_T \)

except for composite symbol \(q_x \) to denote state and head position.

We have that \(w \in L(M_L) \) iff

a) the matrix \(X \) is properly filled in

b) row 0 in \(ID_0 \)

c) row \(P(m) \) has final state

d) successive rows are related through legal transitions of \(M_L \)
M_L is NTM. Let be be the maximum degree of nondeterminism, i.e., for all $q, x : |\delta(q, x)| \leq k$.

To encode which of the possible transitions is chosen when going from $1D_i$ to $1D_{i+1}$ for the accepting sequence:

We use an array C of $P(m)$ elements (call array)

\[
\begin{array}{c|c|c}
\text{TIME} & 0 & 1 \\
\downarrow & C_0 & C_1 \\
& \vdots & \vdots \\
& C_{P(m)-1} & C_{P(m)}
\end{array}
\]

$1 \leq C_i \leq k$

To represent X and C we use boolean variables

$X_{itA} = \text{true if cell } i \text{ in } 1D_t \text{ contains } A$

$C \equiv \text{true if } C_t = t$

where $1 \leq i \leq P(m)$

$0 \leq t \leq P(m)$

$A \in \Gamma' = \Gamma \cup \Gamma^Q$

$1 \leq l \leq k$

Total number of variables is $O(P(m)^2)$, i.e., polynomial

To construct the CNF formula F, we use 4 types of formulas (that are conjunctions of clauses)

Type C) X and C are properly filled in:

Cell i at time t is properly filled

$\text{UNIQUE}_{it} = \sum_{A \in \Gamma'} X_{itA} \land \bigwedge_{A, B \in \Gamma'} (\overline{X_{itA}} \lor \overline{X_{itB}})$
$C[1]$ is properly filled

$$UNIQUE_t^i = \sum_{1 \leq l \leq k} C_{tl} \land \prod_{1 \leq m \leq k} (\bar{C}_{tm} \lor C_{km})$$

$$UNIQUE = \prod_{1 \leq i \leq P_i(m)} UNIQUE_{i,t} \land \prod_{0 \leq t \leq P_i(m)-1} UNIQUE^{\ast}_{i,t}$$

$$\Rightarrow O(P_i(m)^2)$$ clauses, each of length 1 or 2.

Type b) \(ID_0 = q_0 w = q_0 a_n \ldots a_m \)

$$INIT = X_0 X_{g_0}, X_{20}, a_n, \ldots, X_{m0}. a_m$$

$$X_{m+1, 0}, X_{m+2, 0}, \ldots, X_{P_i(m), 0}, \psi$$

$$\Rightarrow O(P_i(m))$$ clauses, each of length 1

Type c) \(ID_{P_i(m)} \) is accepting

$$ACCEPT = \sum_{q \in F} X_{i, P_i(m), q} \left[\begin{array}{c} \delta \end{array} \right]$$

$$\Rightarrow 1$$ clause of length \(O(P_i(m)) \)

Type d) legal transitions

Consider \(ID_4 \) and \(ID_{4+1} \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(A_1, A_2)</th>
<th>(\ldots)</th>
<th>(A_{j-1}, A_{j+1})</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t+1)</td>
<td>(B_1, B_2)</td>
<td>(\ldots)</td>
<td>(B_{j-1}, B_{j+1})</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

In \(ID_{4+1} \), cell \(j \) depends only on 3 cells above it and on \(C_t \)
Various cases: (we assume that there are no stay moves)

1) \(A_{j-1}, A_j, A_{j+1}\) are not composite symbols then \(B_j = A_j\)

2) \(A_{j-1}\) is \(\overline{A}\) and \(q\) th move in \(S(q, X)\) is \((q, Y, R)\)
then \(B_j = \overline{A_j}\)

3) \(A_j\) is \(\overline{A}\) and \(q\) th move in \(S(q, X)\) is \((q, Y, L)\)
then \(B_j = Y\)

4) \(A_{j+1}\) is \(\overline{A}\) and \(q\) th move in \(S(q, X)\) is \((q, Y, L)\)
then \(B_j = \overline{A_j}\)

We use clauses that forbid illegal moves: \(\text{LEGAL}(k, j)\)

\[\begin{align*}
\text{T}(D, \overline{E}, \overline{F}, G, H) \\
&= \left(\overline{C_{j, D}} + \overline{K_j x, t, E} + \overline{K_{j, t, F}} + \overline{K_{j+1, x, G}} \right) \\
&\quad + \overline{K_{j+1, x, H}}
\end{align*}\]

s.t. with clue \(D\)
and \(E, F, G, H\) we have an illegal move.

(NB: the illegal moves are those that do not correspond to 1-4 above)

\[\Rightarrow O(p(n)^2)\] clauses, each of constant length

(since \(0 \leq t < p(n)\), \(1 \leq j \leq p(n)\))

Denote \(F\) is the conjunction of all above clauses.
We can prove that \(w \in \mathcal{L}(M_k)\) iff \(F\) is satisfiable.
It is easy to see that the reduction is poly-time \(\text{q.e.d.}\)
Exercise: Let \(G = (V, E) \) be an undirected graph.

A vertex cover \(C \) of \(G \) is a subset of the vertices \(V \) such that every edge of \(G \) touches at least one of the nodes of \(C \).

The vertex cover problem:

Input:
- graph \(G = (V, E) \)
- integer \(k \)

Output: yes iff \(G \) has a vertex cover of size \(\leq k \).

Vertex cover is NP-complete:

Proof:

in \(\text{NP} \): easy

- guess a subset \(C \) of \(V \) of size \(\leq k \)
- check in poly-time that it is a vertex-cover.

\(\text{NP} \)-hard: by reduction from \(3\text{-SAT} \)

We define a poly-time reduction \(R \) that:

- takes as input a 3-CNF formula \(F \)
- constructs a graph \(G = (V, E) \) and an integer \(k \) such that:

\(F \) is satisfiable \(\iff \) \(G \) admits a vertex cover with \(k \) nodes.

Let \(F = C_1 \land \cdots \land C_m \) be a 3-CNF formula over variables \(\{x_1, \ldots, x_n\} \)

We construct \(G = (V, E) \) as constituted by various components,
- For each variable x_i, we have a truth-setting component $T_i = (V_i, E_i)$ with $V_i = \{ x_i, \overline{x_i} \}$

$$E_i = \{ x_i, \overline{x_i} \}$$

note: at least one of $x_i, \overline{x_i}$ will be in every vertex cover to cover $\{ x_i, \overline{x_i} \}$

- For each clause c_j in F we have a satisfaction testing component $S_j = (V_j', E_j')$

$$S_j = \{ v_1, v_2, v_3, o_1j, o_2j, o_3j \}$$

note: at least two of V_j' will be in every vertex cover to cover E_j'

- We have a communication component, which in the only part that depends on which literals are in which clauses.

Let $c_j = l_{1j} + l_{2j} + l_{3j}$

then we have $E''_j = \{ o_{1j}, l_{1j}, o_{2j}, l_{2j}, o_{3j}, l_{3j} \}$

We then set $K = n + 2m$

variables

clauses
Example: \(F = (\overline{x_1} + \overline{x_3} + x_4) \cdot (\overline{x_1} + x_2 + \overline{x_4}) \)

\[k = m + 2m = 4 + 2 \cdot 2 = 8 \]

We show that \(F \) is satisfiable \(\Rightarrow \) \(G \) has a vertex cover of size \(\leq k \)

\[\leq \]

Let \(V' \subseteq V \) be a vertex cover for \(G \) with \(|V'| \leq k \).

We said that \(V \) contains at least one vertex for each variable and at least two vertices for each clause.

This is already \(k = m + 2m \)

\(\Rightarrow \) at least is actually exactly.

We are \(V' \) to obtain the truth assignment \(\gamma \).

We set \(\gamma(x_i) = \text{true} \) if \(x_i \in V' \)

\(\gamma(x_i) = \text{false} \) if \(\overline{x_i} \in V' \) (i.e., \(\overline{x_i} \in V' \))

To show that \(\gamma \) is a truth assignment that satisfies \(F \), we exploit that all clauses of the communication components are covered by \(V' \).

Consider a clause \(C_j = \overline{x_{j1}} \lor x_{j2} \lor \overline{x_{j3}} \).

Two of the arcs in \(E'' \) are covered by the choice of \(\gamma \) for \(x_{j1}, \overline{x_{j2}}, \overline{x_{j3}} \in V' \).

\(\forall j \in [N] \), let there be \(x_{ji}, \overline{x_{ji}} \)
Let Φ be a truth assignment that satisfies F.

We define a subset $V' \subseteq V$ as follows:

- $x_i \in V'$ iff $\Phi(x_i) = \text{true}$
- $\bar{x}_i \in V'$ iff $\Phi(x_i) = \text{false}$

Since Φ satisfies F, for each communication component $E_j = \{e_{i,j}, l_{i,j}, e_{2i,j}, l_{2i,j}, e_{3i,j}, l_{3i,j}\}$, one of the three edges $\{e_{i,j}, l_{i,j}\}$ is covered in V' by $l_{i,j}$.

We set $i = 1$. Then $\{e_{2i,j}, l_{2i,j}\}, \{e_{3i,j}, l_{3i,j}\}$ can be covered by having $e_{2i,j} \in V'$ and $e_{3i,j} \in V'$.

We get that V' contains $n + 2m$ vertices.
In a collection of NP-complete problems with discussion of variants see

Garey & Johnson.

Burremann & Co. 1973

coNP - completeness

Set us consider the complement of a problem in NP.

E.g. unsatisfiability

\[UNSAT = \{ F \mid F \text{ is a propositional formula that is not satisfiable} \} \]

Given a prop. formula \(F \), how can we check whether \(F \in UNSAT \)?

- try all possible truth assignments for the vars in \(F \)
- if for none of these, \(F \) evaluates to true, answer yes

Intuitively, this is very different from a problem in NP.

Note: in general, a NTM cannot answer yes to such a problem in polynomial time

Definition: \(coNP = \{ L \mid \overline{L} = \Sigma^* \setminus L \in NP \} \)

Note: many problems in \(coNP \) do not seem to be in NP.
We might conjecture NP ≠ coNP

This conjecture is stronger than P ≠ NP.

Indeed, since P = coP, we have that NP ≠ coNP implies P ≠ NP.

- but we might have P ≠ NP, and still NP = coNP

The following result shows a strong connection between NP-complete problems and the conjecture that NP ≠ coNP.

Theorem: If for some NP-complete problem/language L we have \(\overline{L} \in \text{NP} \) (i.e., \(L \in \text{coNP}\)), then NP = coNP.

Proof: Assume \(L \in \text{NPC} \) and \(\overline{L} \in \text{NP}\).

1) We show NP \(\subseteq\) coNP.

Let \(L' \in \text{NP}\). We show \(\overline{L'} \in \text{coNP}\), i.e. \(\overline{L'} \in \text{NP}\).

Since \(L' \in \text{NP}\), there is a poly-time NTM \(N_E\) s.t. \(L(N_E) = \overline{L'}\).

Since \(L' \in \text{NPC}\) and \(L \in \text{NPC}\), \(L' \leq_{\text{poly}} L\), i.e.

there is a polytime reduction \(R\) s.t.

\[w \in L' \iff R(w) \in L\]
\[w \notin L' \iff R(w) \notin L\]

We can construct a poly-time NTM \(N_{E'}\) for \(\overline{L'}\).

2) CONP \(\subseteq\) NP. Similar

q.e.d.
We get the following picture (assuming $P \neq NP$

\[NP \neq coNP \]

Note: it is not known whether $P = NP \land coNP$.