Exercises on space complexity

Exercise 1: Let A be an algorithm of space complexity $s(n)$. Show that there is an algorithm A' such that
- $L(A) = L(A')$
- A' has space complexity $s'(n) = O(s(n) + \log m)$
- A' does not scan the input tape beyond the boundaries of the input

Proof: We proceed in two steps

1) We prove that on input x, there is an algorithm A_x such that
 - $L(A_x) = L(A)$
 - A_x does not scan the input tape beyond location $2^{O(s(n) + \log m)}$ from the input
 - A_x has space complexity $s_x(n) = O(s(n) + \log m)$

This proof is analogous to the one that we did in class to show that a poly-space bounded (N)TM is equivalent to one that has running time $t(n) \leq C \cdot q(n)$ with $q(n) = O(s(n))$ (where $s(n)$ is a polynomial space bound).

We showed $q(n) = 2 \cdot s(n) + 1$, where $C = |\Gamma| + 1$ (Q1)

In our case:
- $q(n) = \log C \cdot q(n) = O(s(n))$
- we have also the position on the input tape that contributes to the configuration:
 $n - 2^{O(s(n))} = 2 \log \cdot 2^{O(s(n))} = 2 \cdot \log m$
 different configurations at most

Note: $Q\text{TM}$ with running time $t(n) \leq 2^{O(s(n) + \log m)}$ can scan at most $2^{O(s(n) + \log m)}$ cells of the input tape
2) We modify the algorithm A_1 in such a way that it does not move beyond the input.

The resulting algorithm A'_1 works as follows:

- whenever A_1 would move right past the end of the input, A'_1 instead:
 - does not move past the end of the input, but maintains a counter on the work tape
 - whenever A_1 moves right, the counter is incremented left, decremented

In this way, A'_1 can keep track of the position of the input head of A_1

Whenever A_1 moves back again over the input symbol, A'_1 does not update the counter (leaving it to 0)

A'_1 operates similarly whenever A_1 moves left past the beginning of the input

How much space does the counter use:

Since A_1 does not scan the input tape beyond $S_i(n) = 2^{O(n)}$, the counter takes $\log_2 S_i(n) = O(n + \log n)$

Hence, the total space used by A'_1 is

$S(n) + O(S(n) + \log 2) = O(S(n) + \log n)$
Exercise 2: Let A be an algorithm of space complexity S. Show that there is an algorithm A' such that

- A' computes the same function as A, i.e. $A'(w) = A(w)$ for all w.
- A' has space complexity $S'(m) = S(m) + O(\log \ell(m))$ where $\ell(m) = \max_{w \in \{0, 1\}^n} A(w)$ is the size of the maximum output for input w of length n.
- A' never rewrites on the same location of its output tape.

Proof:

A' proceeds in successive iterations, each time simulating the whole computation of A:

- In the i-th iteration, A' outputs the i-th bit of $A(w)$.

When simulating A, in its i-th iteration, A' proceeds as follows:

- It does not directly (re)write on the output tape.
- Instead, it maintains on the work tape:
 - A counter i of the next output bit that will be written.
 - A counter c of the bit that A is currently writing.
 - The value of the bit written by A in position i.
- When A would write an output bit, A' operates depending on the values of i and c:
 - If $i \neq c$, then A' does not output anything.
 - If $i = c$, then A' stores the written bit on its work tape.
- At the end of its simulation, A' outputs the stored bit to the i-th position of the output tape.
How much space $S'(n)$ does A' use on the working tape for inputs of length n?
- $O(n)$ cells, since it performs the computation of A.
- The space for the counters i, i_0, and c.
- c_0 and c_0 have to count positions on the output tape, and hence will use $\log_2 l(n)$ bits each.

We get that $S'(n) = S(n) + O(\log_2 l(n))$.