Consider the problem \textsc{false-sat}:

Given a boolean expression \(E \) that is false when all its variables are made false, is there some other truth assignment that makes \(E \) false, besides all-false?

Decide whether the problem is in \(\text{NP} \) or \(\text{coNP} \).

Describe its complement.

If the problem or its complement is \(\text{NP-complete} \), prove it.

Proof:

The problem is \(\text{NP-complete} \).

- In \(\text{NP} \): given a boolean expression \(E \), we need to check:
 1) that \(E \) is false when all variables are assigned false
 2) that there is some other truth assignment making \(E \) false

 (1) can be done in poly-time by a DTM
 (2) can be done in poly-time by a NTM

 guess a truth assignment \(T \) different from all false, and answer yes if \(T \) and \(E \) evaluate to false

- \(\text{NP-hard} \): by a reduction from \(\text{SAT} \)

 Let \(E \) be a boolean expression with variables \(x_1, \ldots, x_n \).
 We construct an expression \(E' \) s.t.: \(E \in \text{SAT} \) iff \(E' \in \text{FALSE-SAT} \)

 1) Test if \(E \) is true when all variables are false (polynomial)
 If so, \(E \in \text{SAT} \), and we convert it to a fixed expression
 that is in \text{FALSE-SAT}, e.g. \(x \lor \neg y \).
2) Otherwise, let E' be $\neg E \land (x_1 \lor \ldots \lor \lor x_n)$. Clearly, the reduction is poly-time.

We have that E' is false when all of x_1, \ldots, x_n are false. Notice that in case (2), E is false when all variables are false. Hence, if $E \in SAT$, then it is satisfied by a truth assignment T different from all-true.

Thus, $\neg E$ is made false by T, and $E' \in FALSE-SAT$.

Conversely, if $E' \in FALSE-SAT$, then since x_1, \ldots, x_n is false only for the all-true truth assignment, there must be some other truth-assignment T that makes $\neg E$ false. Then T makes E true, and $E \in SAT$.
Exercises on problems in P, NP, and NP-complete

Exercise

Consider the following optimization version of SAT:

\text{MAXSAT}: \text{ Input: a propositional formula } F \text{ in CNF, and an integer } k
\text{ Output: yes, if there is a truth assignment that satisfies at least } k \text{ clauses of } F
\text{ no, otherwise}

What is the complexity of MAXSAT?

a) MAXSAT is \text{ NP } immediate, by the following \text{ NP algorithm}
\text{ 1) guess a truth assignment } \pi \text{ (non-deterministic polynomial)}
\text{ 2) count the } \# \text{ of clauses satisfied by } \pi \text{, and answer yes if it is } \geq k \text{ (deterministic polynomial)}

b) MAXSAT is \text{ NP-hard}

This follows from the fact that CSAT is a special case of MAXSAT.

Formally, we can polynomially reduce CSAT to MAXSAT, i.e.

\text{ SAT } \leq \text{ poly MAXSAT }

Given an instance } F \text{ of CSAT, we construct an instance } (F, k) \text{ of MAXSAT, where } k \text{ is the } \# \text{ of clauses of } F.

Obviously, } k \text{ can be obtained in polynomial time from } F, \text{ and }

F \in \text{ CSAT } \iff (F, k) \in \text{ MAXSAT} \quad \Box
Consider the following problems:

1) Vertex-cover (VC)

Given an undirected graph $G = (V, E)$ and an integer $k \geq 2$, is there a subset C of V with $|C| \leq k$ such that C covers all edges of G (i.e., for each edge $\{v_i, v_j\} \in E$ with $v_i \neq v_j$, $\{v_i, v_j\} \cap C \neq \emptyset$).

2) Independent-set (IS)

Given an undirected graph $G = (V, E)$ and an integer $k \geq 2$, is there a subset C of V with $|C| \geq k$ such that for all $v_i, v_j \in C$ with $v_i \neq v_j$, $\{v_i, v_j\} \notin E$.

3) Clique

Given an undirected graph $G = (V, E)$ and an integer $k \geq 2$, is there a subset C of V with $|C| \geq k$ such that for all $v_i, v_j \in C$ with $v_i \neq v_j$, $\{v_i, v_j\} \in E$.

Show that VC, IS, and Clique can be reduced to each other in polynomial time.

N.B. In the definitions of VC, IS, and Clique we have ignored self-loops (since we required $v_i \neq v_j$).
IS \leq poly CLIQUE

Given an instance (G, k) of IS, we construct an instance (G', k') of CLIQUE as follows:

$k' = k$

Set $G' = (V, E)$.

Then $G' = (V, E')$, where $E' = V \times V \setminus E$ (i.e., the edges of E' are obtained by connecting all pairs of nodes that are not connected in E.)

E.g., G

\[\begin{array}{ccc}
1 & \rightarrow & 2 \\
\uparrow & & \downarrow \\
2 & \rightarrow & 5
\end{array}\]

IS

\[\begin{array}{ccc}
3 & \rightarrow & 4 \\
\uparrow & & \downarrow \\
5 & \rightarrow & 4
\end{array}\]

CLIQUE

The reduction works because the maximum independent set of G is precisely the maximum clique in the complement graph of G.

VC \leq poly IS

Given an instance (G, k) of VC, we construct an instance (G', k') of IS as follows:

$k' = |V| - k$

$G' = G$

The reduction works because the vertices in a vertex-cover C cover all edges of G. Hence the set $V \setminus C$ must have no edges between its elements, and is thus an independent set.

E.g.,

\[\begin{array}{ccc}
1 & \rightarrow & 2 \\
\uparrow & & \downarrow \\
2 & \rightarrow & 3 \\
\uparrow & & \downarrow \\
3 & \rightarrow & 4
\end{array}\]

The marked nodes $\{2, 3, 5\}$ are a VC of G.

Hence, there cannot be an edge $\{1, 4\}$.
Given an instance \((G, k)\) of Clique, we construct an instance \((G', k')\) of VC as follows:

\[k' = |V| - k \]

Let \(G = (V, E)\).

Then \(G' = (V, E')\), where \(E' = V \times V \setminus E\).