Given a CNF formula $E = C_1 \land C_2 \ldots \land C_k$
with each $C_i = \bigwedge_{j=1}^{k_i} l_{ij}$,
we construct a 3-CNF formula F as follows.

For each clause C_i of E

1) if $C_i = (l)$ (i.e., a single literal)
 introduce two new variables m_i, \bar{m}_i, and replace C_i by 4 clauses
 \[
 (l + m_i + \bar{m}_i), \quad (l + m_i + \bar{m}_i), \quad (l + m_i + \bar{m}_i), \quad (l + m_i + \bar{m}_i)
 \]

 Since m_i, \bar{m}_i appear in all 4 combinations, the 4 clauses can be satisfied only if l is true.

2) if $C_i = (l_1 + l_2)$
 introduce a new variable z_i, and replace C_i by 2 clauses
 \[
 (l_1 + l_2 + z_i), \quad (l_1 + l_2 + \bar{z}_i)
 \]

3) if $C_i = (l_1 + l_2 + l_3)$, just leave it.

4) if $C_i = (l_1 + l_2 + \ldots + l_m)$ with $m \geq 4$
 introduce $y_1, y_2, \ldots, y_{m-3}$ and replace C_i by
 \[
 (l_1 + l_2 + y_0), \ldots
 \]
 \[
 + (l_{m-2} + \overline{y_{m-4}} + \overline{y_{m-3}}), (l_{m-2} + \overline{y_{m-4}} + \overline{y_{m-3}})
 \]
- An assignment T satisfies if E makes at least one literal of C_i true. Let it be t_j.
 Then, by making y_{j-1}, \ldots, y_{j-2} true and y_{j-1}, \ldots, y_{j-3} false,
 we satisfy all clauses replacing C_i.
 Thus we can extend T to satisfy F.

- Conversely, if T makes all t_j of C_i false, then not all new clauses can be satisfied.
 Why? Each y_j can make at most 1 clause true, but there are $m-2$ clauses and $m-3$ y_j's.

The 3CNF formula F is linear in E and can be constructed in linear time.

We get: CSAT $\leq_{poly} 3$-SAT

\Rightarrow from CSAT NP-hard, we get 3-SAT NP-hard.

We also know that 3SAT is NP, since SAT is NP.

\Rightarrow 3-SAT is NP-complete.
Exercise (10.3.2): The problem 4TA-SAT is defined as follows:

Given a propositional formula \(E \), does \(E \) have at least 4 satisfying truth assignments?

Show that 4TA-SAT is NP-complete.

Proof:

1) 4TA-SAT is in NP

We devise a non-deterministic poly-time algorithm:

1. Guess 4 truth assignments \(T_1, T_2, T_3, T_4 \).
2. Check that \(T_1, T_2, T_3, T_4 \) all satisfy \(E \).

Note that both steps require time polynomial in the size of \(E \).

2) 4TA-SAT is NP-hard.

We show this by reducing SAT to 4TA-SAT.

Let \(E \) be a propositional formula, and let \(x_1, \ldots, x_n \) be all variables in \(E \).

We construct a new formula \(E' \) such that

\[E \in \text{SAT} \iff E' \in \text{4TA-SAT} \]

Let \(y_1, y_2 \) be two new variables. Then

\[E' = E \lor ((x_1 \lor \neg x_2 \lor \ldots \lor x_n) \lor (y_1 \lor \neg y_2) \lor (\neg y_1 \land y_2)) \]
Consider the truth assignments for x_1, x_2, y_1, y_2.

<table>
<thead>
<tr>
<th>x_1, x_2, x_n</th>
<th>y_1, y_2</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>E</td>
<td>$E' $</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

2^{n+2}

$= 3$

≥ 4

Alternative solution:

$E' = E \land (y_1 \lor y_2 \lor y_3)$

- If E is unsatisfiable, then E' is unsatisfiable, and hence $E' \not\in 47A - SAT$

- If E is satisfiable, then E' has at least 7 satisfying truth assignments; these are obtained by combining
 - a TA for x_1, x_2, x_n satisfying E with
 - the 7 TAs for y_1, y_2, y_3 satisfying $y_1 \lor y_2 \lor y_3$