Exercise: (Section 3.3.2 from textbook)

Consider the following languages over \(\Sigma = \{0,1\} \)

\[
L_e = \{ \varepsilon(M) \mid \ell(M) = \emptyset \} \\
L_{\text{ne}} = \{ \varepsilon(M) \mid \ell(M) \neq \emptyset \}
\]

Hence: \(L_e \) ... set of all strings that encode T.M.'s that accept the empty language

\(L_{\text{ne}} \) ... complement of \(L_e \)

Claim 1: \(L_{\text{ne}} \) is R.E.

Proof: construct NTM \(N \) for \(L_{\text{ne}} \)

(and then convert \(N \) to an ordinary T.M.)

\(N \) works as follows: on input \(\varepsilon(M) \)

1) guess a string \(w \in \Sigma^* \)
2) simulate \(M \) on \(w \) (like a UTM)
3) accept \(\varepsilon(M) \) if \(M \) accepts \(w \)

\[
\varepsilon(M) \xrightarrow{\text{guessed } w} N \xrightarrow{\text{yes}} \text{yes}
\]

We have

\[
\varepsilon(M) \in L(N) \iff \exists w \text{ s.t. } \langle M, w \rangle \in L(U) \\
\iff \exists w \text{ s.t. } w \in \ell(M) \\
\iff \varepsilon(M) \in L_{\text{ne}}
\]
Claim 2: \(L_{rec} \) is non-recursively enumerable.

Proof: by reduction from \(L_{H} \) to \(L_{rec} \):

Reduction \(R \) is a function computable by a halting T.M.

- **Input**: instance \(<M, w> \) of \(L_{H} \)
- **Output**: instance \(\Sigma(M') \) of \(L_{rec} \)
- **End set**: \(<M, w> \in L_{H} \iff \Sigma(M') \in L_{rec} \)

Description of \(M' \):

- \(M' \) ignores completely its own input string \(x \).
- Instead, it replaces its input by the string \(<M, w> \) and runs \(M \) on \(w \) (see (*) below).

 - If \(M \) accepts \(w \), then \(M' \) accepts \(x \).
 - If \(M \) never halts on \(w \) or rejects \(w \), then \(M' \) also never halts on \(x \).

Note:

- If \(w \notin \Sigma(M) \Rightarrow \Sigma(M') = \Sigma^* \)
- If \(w \in \Sigma(M) \Rightarrow \Sigma(M') = \emptyset \)

hence \(<M, w> \in L_{H} \iff \Sigma(M') \in L_{rec} \)

We can construct a halting T.M. \(M_\epsilon \) that, given \(<M, w> \) as input, constructs \(\Sigma(M') \) for an \(M' \) that behaves as above.

(*) \(M' \) has the following form: (let \(w = a_1 a_2 \ldots a_n \))

- \(\delta(q_0, 1) = \delta(q_0, 1) = 1 \)
- \(\delta(q_0, i) = \delta(q_0, i) = 0 \)
- \(\delta(q_0, w) = q_0 \)
- \(\delta(q_0, a) = q_0 \)

To summarize, we have that \(L_{rec} \) is RE but non-recursively enumerable. Hence \(L_{rec} \) must be non-RE.
Exercise: 3.2.1

The halting problem \(H \), i.e., the set \(\langle M, w \rangle \) s.t. \(M \) halts on \(w \) (with or without accepting) is R.E., but not recursive.

To show R.E., we construct a T.M. \(H \), s.t.
\[
L(H) = L_H = \{ \langle M, w \rangle | M \text{ halts on } w \}
\]

\[
\langle M, w \rangle \rightarrow H \rightarrow \text{yes or no}
\]

To show that \(L_H \) is not recursive, we assume by contradiction it is no, and derive that \(L_H \) is recursive.

By contradiction, let \(U \) be an algorithm for \(L_H \), and \(U \) a procedure for \(L_H \)

\[
\langle M, w \rangle \rightarrow H \rightarrow A_m \rightarrow \text{yes or no}
\]

\(A_m \) would be an algorithm for \(L_H \). Contradiction
Let \(L \) be R.E. and \(\overline{L} \) be non-R.E.

Consider \(L' = \{0w | w \in L\} \cup \{1w | w \notin L\} \).

What do we know about \(L' \) and \(\overline{L'} \)?

We show that \(L' \) is non-R.E.

Suppose by contradiction that we have a procedure \(M_L \) for \(L' \).
Then we can construct a procedure \(M_{\overline{L}} \) for \(\overline{L} \) as follows:

- on input \(w \), \(M_{\overline{L}} \) changes the input to \(1w \) and simulates \(M_L \).
- if \(M_L \) accepts \(1w \), then \(w \in L \), and \(M_{\overline{L}} \) accepts.
- if \(M_L \) does not terminate or simulates \(M_L \) on \(w \notin L \), and \(M_{\overline{L}} \) does not terminate or simulates \(M_L \) on \(w \notin L \).

\[\Rightarrow M_{\overline{L}} \text{ would accept exactly } \overline{L}. \text{ Contradiction.} \]

\(L' = \{0w | w \in L\} \cup \{1w | w \in L\} \cup \{\epsilon\} \)

Reasoning as for \(L' \), we get that \(\overline{L'} \) is non-R.E.
Exercise 3.3.7 a)

H, the complement of the halting problem, i.e.,
the set of pairs $<M, w>$ such that M on input w
does not halt, is non-R.E.

Proof: By reduction from T_m, which is non-R.E.

Idea: we show how to convert any TM M into another
TM M_h such M_h halts on w iff M accepts w.

Construction:

1) Ensure that M_h does not halt unless M accepts.
 - add to the states of M a new loop state p, with
 $\delta(p, x) = (p, x, y, z)$ for all $x \in \Gamma$
 - for each $\delta(q, y)$ that is undefined and $q \in F$,
 add $\delta(q, y) = (p, z, y, z)$

2) Ensure that, if M accepts, then M_h halts.
 - make $\delta(q, x)$ undefined for all $q \in F$ and $x \in \Gamma$

3) The other moves of M_h are as those of M.

qed.