Exercise 11.1.1 b)

Consider the problem \text{FALSE-SAT}:

Given a boolean expression \(E \) that is false when all its variables are made false, is there some other truth assignment that makes \(E \) false besides all-false?

Decide whether the problem is in \(\text{NP} \) or \(\text{coNP} \).

Describe its complement.

If the problem or its complement is \(\text{NP-complete} \), prove it.

Proof:

The problem is \(\text{NP-complete} \).

- In \(\text{NP} \): given a boolean expression \(E \), we need to check:
 1) that \(E \) is false when all variables are assigned false
 2) that there is some other truth assignment making \(E \) false

 (1) can be done in poly-time by a DTM
 (2) can be done in poly-time by a NDTM

 guess a truth assignment \(T \) different from all false, and answer yes if under \(T \), \(E \) evaluates to false

- \(\text{NP-hard} \): by a reduction from \(\text{SAT} \)

 Let \(E \) be a boolean expression with variables \(x_1, \ldots, x_n \);
 we construct an expression \(E' \) s.t. \(E \in \text{SAT} \) iff \(E' \in \text{FALSE-SAT} \)

 1) test if \(E \) is true when all variables are false (polynomial)
 if so, \(E \in \text{SAT} \), and we convert it to a fixed expression
 that is in \(\text{FALSE-SAT} \), e.g. \(\neg x \land y \).
2) Otherwise, let E' be $\neg E \land (x_1 \lor x_2 \lor \ldots \lor x_n)$.

Clearly, the reduction is poly-time.

We have that E' is false when all of x_1, \ldots, x_n are false.

Notice that in case (2), E' is false when all variables are false.

Hence, if $E \in \text{SAT}$, then it is satisfied by a truth assignment T different from all-false.

Thus, $\neg E$ is made false by T, and $E' \in \text{FALSE-SAT}$.

Conversely, if $E' \in \text{FALSE-SAT}$, then since x_1, x_2, \ldots, x_n is false only for the all-false truth assignment, there must be some other truth-assignment T that makes $\neg E$ false. Then T makes E true, and $E \in \text{SAT}$.
Exercises on problems in \(P \), \(NP \), and \(NP \)-complete

Exercise 4:

Consider the following optimization version of SAT:

MAXSAT: Input: a propositional formula \(F \) in CNF, and an integer \(k \).

Output: yes, if there is a truth assignment that satisfies at least \(k \) clauses of \(F \).

no, otherwise.

What is the complexity of **MAXSAT**?

a) **MAXSAT \(\in \) \(NP \)**: immediate, by the following \(NP \) algorithm:

1) guess a truth assignment \(\alpha \) (non-deterministic polynomial)

2) count the \# of clauses satisfied by \(\alpha \), and answer yes iff it is \(\geq k \) (deterministic polynomial).

b) **MAXSAT \(\in \) \(NP \)-hard**.

This follows from the fact that **CSAT** is a special case of **MAXSAT**.

Formally, we can polynomially reduce **CSAT** to **MAXSAT**, i.e.

\[SAT \leq_{poly} MAXSAT \]

Given an instance \(F \) of **CSAT**, we construct an instance \((F, k) \) of **MAXSAT**, where \(k \) is the \# of clauses of \(F \).

Obviously, \(k \) can be obtained in polytime from \(F \), and

\[F \in \text{CSAT} \iff (F, k) \in \text{MAXSAT} \]