Barani: Reduction from 3-SAT to CSAT
(see textbook 10.3.4)

Given a CNF formula \(E = C_1 \land C_2 \ldots \land C_n \)
with each \(C_i = \bigvee_{j=1}^{k_i} l_{j,i} \),
we construct a 3-CNF formula \(F \) as follows.

For each clause \(C_i \) of \(E \)

1) if \(C_i = (l) \) (i.e., a single literal)
 introduce two new variables \(u, v \), and replace
 \(C_i \) by 4 clauses
 \[(l + u + v), \]
 \[(l + u + \overline{v}), \]
 \[(l + \overline{u} + v), \]
 \[(l + \overline{u} + \overline{v}) \]
 Since \(u, v \) appear in all 4 combinations, the 4 clauses can be satisfied only if \(l \) is true.

2) if \(C_i = (l_1 + l_2) \)
 introduce a new variable \(\overline{z} \), and replace
 \(C_i \) by 2 clauses
 \[(l_1 + l_2 + \overline{z}), \]
 \[(l_1 + l_2 + \overline{\overline{z}}) \]
 \(\therefore \overline{z} \) is 1

3) if \(C_i = (l_1 + l_2 + l_3) \), just leave it

4) if \(C_i = (l_1 + l_2 + \ldots + l_m) \) with \(m \geq 4 \)
 introduce \(y_3, y_4, \ldots, y_{m-3} \) and replace \(C_i \) by
 \[(l_1 + l_2 + y_3), \]
 \[(l_3 + \overline{y_3} + y_4), \]
 \[\ldots \]
 \[+ (l_{m-2} + \overline{y_{m-4}} + y_{m-3}), \]
 \[(l_{m-1} + l_m + \overline{y_{m-3}}) \]
An assignment T satisfying E makes at least one literal of C_i true. Let it be l_j.

Then, by making j_{i-1}, j_{i-2} true and j_{i-1}, \ldots, j_{m-3} false,

we satisfy all clauses replacing C_i. Thus we can extend T to satisfy F.

Conversely, if T makes all l_j of C_i false, then not all new clauses can be satisfied.

Why? Each j_k can make at most 1 clause true, but there are $m-2$ clauses and $m-3$ j_k's.

The 3-CNF formula F is linear in E and can be constructed in linear time.

We get: $\text{CSAT} \not\leq_{poly} \text{3-SAT}$

\Rightarrow from $\text{CSAT} \not\in \text{NP}$, we get $\text{3-SAT} \not\in \text{NP}$

We also know $\text{3-SAT} \in \text{NP}$ (since SAT $\in \text{NP}$)

\Rightarrow 3-SAT is NP-complete.
Exercise (10.3.2): The problem $4TA - SAT$ is defined as follows:

Given a propositional formula E, does E have at least 4 satisfying truth assignments?

Show that $4TA - SAT$ is in NP-complete.

Proof:

1) $4TA - SAT$ is in NP

We devise a non-deterministic poly-time algorithm:

1) give 4 truth-assignments T_1, T_2, T_3, T_4
2) check that T_1, T_2, T_3, T_4 all satisfy E

Note that both steps require time polynomial in the size of E

2) $4TA - SAT$ is NP-hard

We show this by reducing SAT to $4TA - SAT$.

Let E be a propositional formula, and let $x_1, ..., x_n$ be all variables in E.

We construct a new formula E' as:

$$E \in SAT \iff E' \in 4TA - SAT$$

Let y_1, y_2 be two new variables. Then

$$E' = E \lor ((x_1 \land \neg x_2 \land ... \land x_n) \land (y_1 \land \neg y_2) \lor (\neg y_1 \land y_2))$$
Consider the truth assignments for $x_1, \ldots, x_n, y_1, y_2$.

<table>
<thead>
<tr>
<th>$x_1 \cdot x_2 \cdot x_n$</th>
<th>$y_1 \cdot y_2$</th>
<th>Case 1 $E \notin SAT$</th>
<th>Case 2 $E \in SAT$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T \cdots T$</td>
<td>$T \ T$</td>
<td>$F \ T$</td>
<td>$? \ T$</td>
</tr>
<tr>
<td>$T \cdots T$</td>
<td>$T \ F$</td>
<td>$F \ T$</td>
<td>$? \ T$</td>
</tr>
<tr>
<td>$T \cdots T$</td>
<td>$F \ T$</td>
<td>$F \ T$</td>
<td>$? \ T$</td>
</tr>
<tr>
<td>$T \cdots T$</td>
<td>$F \ F$</td>
<td>$F \ F$</td>
<td>$? \ T$</td>
</tr>
</tbody>
</table>

$\vdash \exists 3 \geq 4$

Alternative solution:

$E' = E \land (y_1 \lor y_2 \lor y_3)$

- If E is unsatisfiable, then E' is unsatisfiable, and hence $E' \notin SAT$

- If E is satisfiable, then E' has at least 7 satisfying truth assignments; these are obtained by combining:
 - a TA for x_1, \ldots, x_n satisfying E with
 - the 7 TAs for y_1, y_2, y_3 satisfying $y_1 \lor y_2 \lor y_3$