Exercise: (Section 3.3.2 from textbook)

Consider the following languages over \(\Sigma = \{0,1\} \):

\[
L_e = \{ E(M) \mid L(M) = \emptyset \}
\]
\[
L_{\neg e} = \{ E(M) \mid L(M) \neq \emptyset \}
\]

\(L_e \) is the set of all strings that encode TMs which accept the empty language.

\(L_{\neg e} \) is the complement of \(L_e \).

Claim 1: \(L_{\neg e} \) is R.E.

Proof: construct NTM \(N \) for \(L_{\neg e} \) (and then convert \(N \) to an ordinary TM.)

\(N \) works as follows: on input \(E(M) \):

1) Guess a string \(w \in \Sigma^* \)
2) Simulate \(M \) on \(w \) (like a UTM)
3) Accept \(E(M) \) if \(M \) accepts \(w \)

We have:

\[
E(M) \in L(N) \iff \exists w \text{ s.t. } \langle M, w \rangle \in E(U) \implies \exists w \text{ s.t. } w \in L(M) \implies E(M) \in L_{\neg e}
\]
Claim 2: \(L_{ne} \) is non-recursively enumerable

Proof: by reduction from \(L_m \) to \(L_{ne} \)

Reduction \(R \) is a function computable by a halting T.M.
with input: existence \(\langle M, w \rangle \) of \(L_m \)
output: existence \(\exists (M') \) of \(L_{ne} \)
end set: \(\langle M, w \rangle \in L_m \iff \exists (M') \in L_{ne} \)

Description of \(M' \):
- \(M' \) ignores completely its own input string \(\bar{x} \)
- instead, it replaces its input by the string \(\langle M, w \rangle \) and runs \(M \) on \(w \) (see (*) below)

- if \(M \) accepts \(w \), then \(M' \) accepts \(\bar{x} \)
- if \(M \) never halts on \(w \) or rejects \(w \)
 then \(M' \) also never halts on \(\bar{x} \)

Note: if \(w \in L(M) \Rightarrow L(M') = \Sigma^* \)
if \(w \notin L(M) \Rightarrow L(M') = \emptyset \)

hence \(\langle M, w \rangle \in L_m \iff \exists (M') \in L_{ne} \)

We can construct a halting T.M. \(M_R \) that, given \(\langle M, w \rangle \) as input, constructs \(\exists (M') \) for an \(M' \) that behaves as above.

(\textit{*)} \(M' \) has the following form: (let \(w = a_0, \ldots, a_n \))

\[\xymatrix{ 0/1/3 \ar[r] & 1/6/2 \ar[r] & 1/6/2 \ar[r] & \cdots \ar[r] & 0/2 \ar[r] & 1/6 \ar[r] & 1/6 \ar[r] & 0/9 \ar[r] & \cdots } \]

\[0/9 \] \(M \)

To sum up, we have that \(L_{ne} \) is RE but non-recursively enumerable.
Hence \(L_{ne} \) must be non-RE.
The halting problem L_{Halt}, the set $\langle M, w \rangle$ s.t. M halts on w (with or without accepting) is R.E. but not recursive.

To show R.E., we construct a T.M. H s.t.

$L_H = \{ \langle M, w \rangle | M \text{ halts on } w \}$

To show that L_H is not recursive, we assume by contradiction it is R.E., and derive that L_H is recursive.

By contradiction, let H be an algorithm for L_H and U a procedure for L_H.

A_n would be an algorithm for L_H, contradiction.
Let \(L \) be R.E. and \(\overline{L} \) be non-R.E.

Consider \(L' = \{0w \mid w \in L\} \cup \{1w \mid w \notin L\} \).

What do we know about \(L' \) and \(\overline{L}' \)?

We show that \(L' \) is non-R.E.

Suppose by contradiction that we have a procedure \(M_L \) for \(L' \).

Then we can construct a procedure \(M_{\overline{L}} \) for \(\overline{L} \) as follows:

- on input \(w \), \(M_{\overline{L}} \) changes the input to \(1w \) and simulates \(M_L \).

- if \(M_L \) accepts \(1w \), then \(w \in L \), and \(M_{\overline{L}} \) accepts.

- if \(M_L \) does not terminate or terminates and answers no, then \(w \notin L \), and \(M_{\overline{L}} \) does not terminate or terminates and answers no.

\[\Rightarrow M_{\overline{L}} \text{ would accept exactly } \overline{L}. \text{ Contradiction} \]

\[\overline{L}' = \{0w \mid w \in L\} \cup \{1w \mid w \notin L\} \cup \\{\varepsilon\} \]

Reversing as for \(L' \), we get that \(\overline{L}' \) is non-R.E.
Fl, the complement of the halting problem, i.e.,
the set of pairs \(\langle M, w \rangle \) such that \(M \) on input \(w \)
does not halt, is non-R.E.

Proof: By reduction from \(E_n \), which is non-R.E.

Idea: we show how to convert any TM \(M \) into another
TM \(M'_h \) such \(M'_h \) halts on \(w \) iff \(M \) accepts \(w \).

Construction:
1) Ensure that \(M'_h \) does not halt unless \(M \) accepts.
 - Add to the states of \(M \) a new loop state \(q, \) with
 \[\delta(q, x) = (q, x, r) \] for all \(x \in \Gamma \)
 - For each \(\delta(q, y) \) that is undefined and \(q \neq F \)
 - add \(\delta(q, y) = (q, y, r) \)

2) Ensure that, if \(M \) accepts, then \(M'_h \) halts
 - Make \(\delta(q, x) \) undefined for all \(q \neq F \) and \(x \in \Gamma \)

3) The other moves of \(M'_h \) are as those of \(M \).

\(\square \)