Problem 1.1 [6 points] You must give a brief explanation of your answer to receive full credit.
(a) Decide whether the following statement is TRUE or FALSE: The complement of a recursive-enumerable language is recursively-enumerable.
(b) Let M_2 be a 2-tape (deterministic) TM, and let M_1 be the result of converting M_2 into a (1-tape deterministic) TM. Sketch using two to three sentences the main idea underlying the conversion. How are the running times of M_1 and M_2 related to each other?
(c) Decide whether the following statement is TRUE or FALSE: For all languages L_1, L_2, and L_3, if there exist a reduction from L_1 to L_3 and a reduction from L_2 to L_3, then there exists a reduction from L_1 to L_2.

Problem 1.2 [6 points] Construct a TM M that accepts the language $L = \{n\#w \mid n$ is a number represented in binary with the least significant digit on the right, and $w \in \{a,b,c\}^* \}$ with $|w|_a + |w|_b = n\}$,
E.g.: $10\#acbc \in L$, $0\# \in L$, $10\#acbc \notin L$, $10\#ccac \notin L$.
Show the sequence of IDs of M on the input strings "$10\#acbc$" and "$10\#cb$".

Problem 1.3 [6 points] The *extraction* $L_1 \oplus L_2$ of two languages L_1 and L_2 is defined as:
$L_1 \oplus L_2 = \{vw \mid vw_2w \in L_1$, for some $w_2 \in L_2\}$
Show that the class of recursively enumerable languages is closed under the extraction operation, i.e., that if L_1 and L_2 are recursively enumerable, then so is $L_1 \oplus L_2$.

Problem 1.4 [6 points]
(a) Let f and g be primitive recursive functions. Show that the following predicate p is primitive recursive:
$p(x) = 1$ if $f(i) > g(j)$, for all $1 \leq i \leq x$ and $1 \leq j \leq x$, otherwise
(b) Show that the following function f is primitive recursive:
$f(x) = \begin{cases} 2 & \text{if } x = 0 \text{ or } x = 1 \\ 3 \cdot f(x-1) \cdot f(x-2) & \text{if } x \geq 2 \end{cases}$

Problem 1.5 [6 points]
(a) Let f be a total number-theoretic function with $n + 1$ variables. Provide the definition of the $(n + 1)$-variable function $g_n f$ such that $g_n f(\vec{x}, y)$ encodes the values of $f(\vec{x}, i)$ for $1 \leq i \leq y$.
(b) Let g and h be total number-theoretic functions, respectively with n and $n + 2$ variables. Define the $(n + 1)$-variable function f obtained from g and h by *course-of-values recursion*.
Solutions to the TOC exam of 30/1/2003, Part 1

9.1 c) FALSE. Consider, e.g. L_n
 b) M_1 has 4 heads, 2 for the 2 tapes, 2 with a marker for the 2 head positions. For each move of M_2, one move back and forth of M_1
 M_1 has quadratic running time in the running time of M_2
 c) FALSE: e.g., L_1, a RE language
 L_2 a REC language
 L_3 a non-REC language
 \{ L_1 < L_3 \}
 \{ L_2 < L_3 \}
 but L_1 \neq L_2

9.2

9.3. N is a 3-tape NTM working as follows, when given an input string x on tape 1:
 1) guess a prefix w of x and copy it to tape 3
 2) guess an arbitrary string w_2 on tape 2
 3) copy w_2 to tape 3 immediately after w
 4) run M_2 on w_2 on tape 2
 If M_2 accepts, then proceed.
 If M_2 rejects or loops, then this non-deterministic run of N will also reject or loop.

 5) copy the remaining part w of x from tape 1 to tape 3, immediately after w_2. Tape 3 now contains \(w w_2 w \).
 6) run M_1 on \(w w_2 w \) and accept if M_1 accepts.
 Otherwise, this non-deterministic run of N will reject or loop.
1.4 e) \(q(x) = \prod_{i=0}^{x} q_1 \left(f(i), g(i) \right) \)

Since \(f, g \) are PRFs,
the composition of PRFs is a PRF
the bounded product of a PRF is a PRF.
we get that also \(q \) is a PRF.

b) We define an equivalence function \(h(x) = q_{m_1}(f(x), f(x+1)) \)

\[
\begin{align*}
 h(0) &= q_{m_1}(f(0), f(1)) = q_{m_1}(2, 2) = 2^3 \cdot 3^3 = 8 \cdot 27 = 216 \\
 h(x+1) &= q_{m_1}(f(x+1), f(x+2)) = \\
 &= q_{m_1}(f(x+1), 3 \cdot f(x+1), f(x)) = \\
 &= q_{m_1}(\text{dec}(1, h(x)), 3 \cdot \text{dec}(1, h(x)) = \text{dec}(0, h(x)))
\end{align*}
\]

Since \(q_{m_1} \) and \(\text{dec} \) are PRFs, this is a definition of \(h \) by PR.

\(f(x) = \text{dec}(0, h(x)) \)

Hence \(f \) is a PRF.

1.5 a) \(f_{m_2}(x, y) = \prod_{i=0}^{x} q_{m}(i) \)

b) \[
\begin{align*}
 f(x, 0) &= q_1(x) \\
 f(x, y+1) &= h(x, y, q_1(x, y))
\end{align*}
\]
Exercise 1: Consider a TM $M_0 = (Q_0, \Sigma, \Gamma_0, \delta_0, q_0, \phi, F_0)$.

Show that $L(M)$ is also accepted by a TM M_1 that never moves left of its initial position (i.e., L by a TM with a semi-infinite tape).

Idea: M_0 is a two-track TM: $M_0 = (Q_0, \Sigma, \Gamma_0, \delta_0, q_0, \phi, F_0)$

Let us call q_0 the initial tape position of M_0.

The states of M_1 are all the states of M_0, with an additional component $P \in \{P, N\}$, indicating whether M_0 is currently working on the track representing the positive or negative portion of the tape of M_0.

- $Q_1 = Q_0 \times \{P, N\}$
- $\Gamma_1 = \Gamma_0 \times (\Gamma_0 \cup \{\star\})$

The \star on Γ_1 is used to detect when M_1 reaches the leftmost tape position.

Initially, M_1 writes \star on Γ_1 of the leftmost position (for this it actually needs two additional states).

For the transitions of M_1, we need to distinguish 4 cases:

1) M_0 is to the right of $q_0 \Rightarrow M_1$ works on right track (T_r)
2) M_0 is to the left of $q_0 \Rightarrow M_1$ works on left track (T_l)
3) M_0 is on $q_0 \Rightarrow M_1$ is on $[\star]$
Let $\delta_0(q, x) = (q', y, d)$ be a transition of M_0.

Then we have:

1) $\delta_0([q, P], [\bar{x}]) = ([q', P], [\bar{y}], d)$ for every $2 \in \Gamma_0$ (i.e., $2 \neq x$)

2) $\delta_0([q, N], [\bar{x}]) = ([q', N], [\bar{y}], d)$ for every $2 \in \Gamma_0$

where $\bar{d} = L$ if $d = R$
 $\bar{d} = R$ if $d = L$

3) If M_0 moves right, i.e. $d = R$

 $\delta_0([q, -], [\bar{x}]) = ([q', P], [\bar{y}], R)$

 If M_0 moves left, i.e. $d = L$

 $\delta_0([q, -], [\bar{x}]) = ([q', N], [\bar{y}], R)$

- Final states of M_1: $F_1 = F_0 \times \{P, N\}$
Exercise 2. Construct a TM that computes the length of its input string, represented as a binary number (with the least significant digit on the right). Assume $\Sigma = \{0, 1\}$.

Idea: we write a counter to the left of the input separated by a $\$$. We repeatedly move to the right of the input, delete the last symbol, come back and increment the counter.
Exercise 3: For a TM M with input alphabet Σ, let $\langle M, w \rangle$ denote the encoding $E(M)$ of M followed by input w.

Consider the language $L = \{ \langle M, w \rangle \mid M$ when started on an input string w, eventually does three consecutive transitions in which it moves the head in the same direction $\}$.

a) Show that L is recursively enumerable.
b) Show that L is not recursive.

c) We reduce L to L_w.

The reduction R is a TM that takes as input $\langle M, w \rangle$ and produces as output $R(\langle M, w \rangle) = \langle M', w \rangle$ such that $\langle M, w \rangle \in L$ iff $\langle M', w \rangle \in L_w$.

We describe how R has to transform $E(M)$ to obtain $E(M')$:

- R has to add to the states of M a second component that counts how many consecutive transitions M has made in the same direction:

 The values of the counter component are $-3, -2, -1, 1, 2, 3$.

- The transitions of M are modified to update the counter:

 If M moves right:

 if M moves right:

 then in M':

 - $C = -2 \rightarrow C = -1$
 - $C = -1 \rightarrow C = 0$
 - $C = 0 \rightarrow C = 1$
 - $C = 1 \rightarrow C = 2$
 - $C = 2 \rightarrow C = 3$

 If M moves left:

 then in M':

 - $C = -2 \rightarrow C = -3$
 - $C = -3 \rightarrow C = -2$
 - $C = -2 \rightarrow C = -1$
 - $C = -1 \rightarrow C = 0$
 - $C = 0 \rightarrow C = 1$

- The states with the counter 3 or -3 are the only final states.
b) We reduce the halting problem \(L_H \) to \(L \).

The reduction \(R \) is a TM that takes as input \(\langle M, w \rangle \) and produces as output \(R(\langle M, w \rangle) = \langle M', w \rangle \) such that \(\langle M, w \rangle \in L_H \iff \langle M', w \rangle \in L \).

We describe how \(R \) has to transform \(E(M) \) to obtain \(E(M') \):

- the final states of \(M \) are made non-final in \(M' \);
- from a final or blocking state of \(M \) we add to \(M' \) a transition to a new state from which \(M' \) makes 3 transitions to the right;
- we have to make sure that \(M' \) never does 3 consecutive transitions in the same direction (except the ones above).

Hence:

if \(M \) does an R-move, then
\(M' \) does an R-L-R move.

if \(M \) does an L-move, then
\(M' \) does an L-R-L move.

- the tape symbol is changed only in the first of the three moves, while the other two leave the tape unchanged.
- for the dummy moves, additional states are needed, and these need to be distinct for each state of \(M \).
Exercise 4: Let \(f(x) \) be a PRF.

(a) Show that the following predicate is a PRF:
\[
f(x,y) = \begin{cases} 1 & \text{if } g(i) < g(x) \text{ for all } 0 \leq i \leq y \\ 0 & \text{otherwise} \end{cases}
\]
\[
f(x,y) = \sum_{i=0}^{y} \text{lt}(g(i), g(x))
\]

(b) Let \(f \) be defined by
\[
f(x) = \begin{cases} 2 & \text{if } x = 0 \\ 3 & \text{if } x = 1 \\ 4 & \text{if } x = 2 \\ (f(x-3) + f(x-1)) & \text{if } x \geq 3 \\ \end{cases}
\]

Give the values \(f(4) \), \(f(5) \), \(f(6) \).

\[
\begin{align*}
 f(3) &= f(0) + f(2) = 1 + 3 = 4 \\
f(4) &= f(1) + f(3) = 2 + 4 = 6 \\
f(5) &= f(2) + f(4) = 3 + 6 = 9 \\
f(6) &= f(3) + f(5) = 4 + 9 = 13 \\
\end{align*}
\]

Show that \(f \) is a PRF.

We have that \(f(y+1) = f(y-2) + f(y) \).

We introduce an auxiliary function \(h \) with
\[
h(y) = [f(y), f(y+1), f(y+2)] = q_{m_2}(f(y), f(y+1), f(y+2)),
\]
\[
h(0) = q_{m_2}(f(0), f(1), f(2)) = q_{m_2}(1, 2, 3) = 2^2 \cdot 3^3 \cdot 5^4
\]
\[
h(y+1) = [f(y+1), f(y+2), f(y+3)] =
\[
= [f(y+1), f(y+2), f(y) + f(y+2)] =
\[
= [\text{dec}(1, h(y)), \text{dec}(2, h(y)), \text{dec}(0, h(y)) + \text{dec}(2, h(y))]
\]
\[
= q_{m_2}(...)
\]

Hence \(h \) is PR. Then \(f(y) = \text{dec}(0, h(y)) \) is also PR.