Exercise: (Section 3.3.2 from textbook)
Consider the following languages over \(\Sigma = \{0,1\} \):

\[
L_e = \{ \langle E(M) \rangle \mid L(M) = \emptyset \}
\]

\[
L_{\bar{e}} = \{ \langle E(M) \rangle \mid L(M) \neq \emptyset \}
\]

\(L_e \) is the set of all strings that encode TMs that accept the empty language.

\(L_{\bar{e}} \) is the complement of \(L_e \).

Claim 1: \(L_{\bar{e}} \) is R.E.

Proof: construct NTM \(N \) for \(L_{\bar{e}} \)

(and then convert \(N \) to an ordinary TM.)

\(N \) works as follows: on input \(E(M) \):

1) guess a string \(w \in \Sigma^* \)
2) simulate \(M \) on \(w \) (like a UTM)
3) accept \(E(M) \) if \(M \) accepts \(w \)

\[\begin{array}{ccc}
\text{guessed } w & \rightarrow & \text{U} \\
E(M) & \rightarrow & \text{yes} \\
& \rightarrow & \text{yes} \\
& \rightarrow & \text{N}
\end{array}\]

We have \(E(M) \in L_{\bar{e}}(N) \iff \exists w \text{ s.t. } \langle M, w \rangle \in L(U) \iff \exists w \text{ s.t. } w \in L(M) \iff E(M) \in L_{\bar{e}} \)
Claim 2: \(L_{ne} \) is non-recursive.

Proof: by reduction from \(L_m \) to \(L_{ne} \).

Reduction \(R \) is a function computable by a halting T.M. with input: instance \(\langle M, w \rangle \) of \(L_m \)

output: instance \(\varepsilon(M') \) of \(L_{ne} \)

end set: \(\langle M, w \rangle \in L_m \iff \varepsilon(M') \in L_{ne} \)

Description of \(M' \):
- \(M' \) ignores completely its own input string \(X \)
- instead, it replaces its input by the string \(\langle M, w \rangle \) and runs \(M \) on \(w \) (see (*) below)
- if \(M \) accepts \(w \), then \(M' \) accepts \(X \)
- if \(M \) never halts on \(w \) or rejects \(w \)
 then \(M' \) also never halts or rejects \(X \)

Note: if \(w \in \mathcal{L}(M) \to \mathcal{L}(M') = \Sigma^* \)
if \(w \notin \mathcal{L}(M) \to \mathcal{L}(M') = \emptyset \)

hence \(\langle M, w \rangle \in L_m \iff \varepsilon(M') \in L_{ne} \)

We can construct a halting T.M. \(M_{R} \) that, given \(\langle M, w \rangle \) as input, reconstructs \(\varepsilon(M') \) for an \(M' \) that behaves as above.

q.e.d.

(*) \(M' \) has the following form:

\[
\begin{array}{c}
\text{Input } X \\
\text{Write } w \text{ on the tape} \\
\text{Go to the beginning of } w \text{ and} \\
\text{Runs } M \text{ on } w
\end{array}
\]

To sum up, we have that \(L_{ne} \) is RE but non-recursive.

Hence \(L_{ne} \) must be non-RE.
Exercise 3.2.1

The halting problem, \(L_{\text{halt}} \), is the set \(\langle M, w \rangle \) s.t.
\(M \) halts on \(w \) (with or without accepting) is RE.
but not recursive.

To show RE, we construct a T.M. \(H \) s.t.
\(L(H) = L_H = \{ \langle M, w \rangle \mid M \text{ halts on } w \} \)

To show that \(L_H \) is not recursive, we assume by contradiction
it is RE, and derive that \(L_m \) is recursive.

By contradiction, let \(H \) be an algorithm for \(L_H \), and \(V \) a procedure for \(L_m \)

\(A_m \) would be an algorithm for \(L_m \).
Contradiction.
Let L be R.E. and \overline{L} be non-R.E.

Consider $L' = \{0w | w \in L\} \cup \{1w | w \notin L\}$.

What do we know about L' and $\overline{L'}$?

We show that L' is non-R.E.

Suppose by contradiction that we have a procedure M_L for L'.

Then we can construct a procedure $M_{\overline{L}}$ for \overline{L} as follows:
- on input w, $M_{\overline{L}}$ changes the input to $1w$ and simulates M_L.
- if M_L accepts $1w$, then $w \in L$, and $M_{\overline{L}}$ accepts.
- if M_L does not terminate or terminates and answers no, then $w \notin L$, and $M_{\overline{L}}$ does not terminate or terminates and answers no.

$\Rightarrow M_{\overline{L}}$ would accept exactly \overline{L}. Contradiction.

$\overline{L'} = \{0w | w \in L\} \cup \{1w | w \in L\} \cup \{\epsilon\}$

Reasoning as for L', we get that $\overline{L'}$ is non-R.E.
Fl, the complement of the halting problem, i.e., the set of pairs \(\langle M, w \rangle \) such that \(M \) on input \(w \) does not halt, is non-R.E.

Proof: By reduction from \(L_1 \), which is non-R.E.

Idea: we show how to convert any TM \(M \) into another TM \(M_h \) such: \(M_h \) halts on \(w \) iff \(M \) accepts \(w \).

Construction:
1) Ensure that \(M_h \) does not halt unless \(M \) accepts.
 - Add to the states of \(M \) a new loop state \(q \), with
 \[\delta(q, x) = (q, x, y) \] for all \(x \in \Gamma \)
 - For each \(\delta(q, y) \) that is undefined and \(q \in F \),
 add \(\delta(q, y) = (p, y, f) \)

2) Ensure that, if \(M \) accepts, then \(M_h \) halts.
 - Make \(\delta(q, x) \) undefined for all \(q \in F \) and \(x \in \Gamma \)

3) The other moves of \(M_h \) are as those of \(M \).

Q.E.D.