Exercise (Example 8.2 from textbook)

Construct a Turing Machine accepting the language

\[\{0^m1^n \mid m \geq 1\} \]

Solution

The idea is that the TM M that we construct needs the leftmost 0, turns it into X, and moves right until it reaches a 1, that is turned into Y. Then the head moves left again to the leftmost 0 (on the right to a X), and starts again until all 0's and 1's are turned into X's and Y's respectively.

If the input is not in 0*1*, M will fail to find a move and it won't accept. If M changes the last 0 and the last 1 in the same round, it will go into the final state and accept.

\[Q = \{ q_0, q_1, q_2, q_3, q_4 \} \]
\[\Sigma = \{ 0, 1 \} \]
\[\Gamma = \{ 0, 1, X, Y, \delta \} \]

\(q_0\) : start state
\(f = \{ q_9 \}\)

In \(q_0\) is the state in which M is when the head precedes the leftmost 0. In state \(q_1\), M moves right skipping 0's and Y's until it gets to a 1. In state \(q_2\), M moves left while skipping Y's and 0's again, until it gets to a X and goes again in \(q_0\).
Starting from q_0, if a 1 is read instead of a 0, H goes in q_3 and moves right; if a 1 is found, then there are more 1's than 0's; if a 0 is read, then the initial string is accepted (transition to q_4).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>X</th>
<th>Y</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>(q_1, x, R)</td>
<td>–</td>
<td>–</td>
<td>(q_3, Y, R)</td>
<td>–</td>
</tr>
<tr>
<td>q_1</td>
<td>$(q_2, 0, R)$</td>
<td>(q_2, y, L)</td>
<td>–</td>
<td>(q_2, y, R)</td>
<td>–</td>
</tr>
<tr>
<td>q_2</td>
<td>$(q_2, 0, L)$</td>
<td>–</td>
<td>(q_0, x, R)</td>
<td>(q_2, y, L)</td>
<td>–</td>
</tr>
<tr>
<td>q_3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>(q_3, y, R)</td>
<td>$(q_4, 5, R)$</td>
</tr>
<tr>
<td>q_4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Exercise

Show the computation of the TM above when the input string is:

(a) 00
(b) 000111

Solution

(a) $q_0 \delta 00 \rightarrow xq_1 \delta 01 \rightarrow x0q_2 \delta 1$

and the TM halts.

(b) $q_0 \delta 000111 \rightarrow xq_2 \delta 0111 \rightarrow x0q_3 \delta 111 \rightarrow$

$x00q_4 \delta 11 \rightarrow x0q_2 \delta 11 \rightarrow xq_2 \delta 011 \rightarrow q_2 \delta 00y11 \rightarrow$

$q_2 \delta 0y11 \rightarrow xxq_4 \delta 11 \rightarrow xxq_2 \delta 11 \rightarrow xx0q_3 \delta 11 \rightarrow$

$xx0q_2 \delta 11 \rightarrow xxq_0 \delta 11 \rightarrow xq_0 \delta y11 \rightarrow$

$xq_2 \delta yy1 \rightarrow xxq_2 \delta yy1 \rightarrow q_2 \delta 0yy1 \rightarrow xq_0 \delta 0yy1 \rightarrow$

$xxq_4 \delta yy1 \rightarrow xxq_2 \delta yy1 \rightarrow xxxq_2 \delta yy1 \rightarrow xxxyq_2 \delta yy1 \rightarrow$

$xxxq_2 \delta yy1 \rightarrow xq_2 \delta yy1 \rightarrow xxyq_2 \delta yy1 \rightarrow$

$xxxq_2 \delta yy1 \rightarrow xxyq_3 \delta yy1 \rightarrow xxyq_5 \delta yy1 \rightarrow$
Exercise (8.2.3 from textbook):

Design a Turing Machine that takes as input a number N in binary and turns it into $N+1$ (in binary); the number N is preceded by the symbol $\$, which may be destroyed during the computation. For example, 111 is turned into 1000; 1001 is turned into 1010.

Solution

The idea is to toggle the rightmost digit, and, from right to left, all consecutive 1's until we get to the first 0 (which is also toggled). If there is no 0 to be toggled, a 1 is added on the left of the first digit (i.e., in place of the $\$).

We need three states, where only q_2 is the final state; we briefly describe what the TM does in the different states.

q_0: The TM goes right until it reaches $\$, after the rightmost digit. When $\$ is reached, the TM goes into q_2.

q_1: Goes left toggling all 1's and the first 0 (from right); when 0 or $\$ is reached, the symbol is turned into 1.

q_2: Final state; the TM does nothing.

<table>
<thead>
<tr>
<th></th>
<th>$$</th>
<th>0</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>$(q_0, $, R)</td>
<td>$(q_0, 0, R)$</td>
<td>$(q_0, 1, R)$</td>
<td>$(q_2, 5, L)$</td>
</tr>
<tr>
<td>q_1</td>
<td>$(q_1, 1, L)$</td>
<td>$(q_1, 1, L)$</td>
<td>$(q_1, 0, L)$</td>
<td>—</td>
</tr>
<tr>
<td>q_2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Exercise (8.22 from textbook)

Design a Turing machine accepting the following language:
\[
\{ w \in \{0,1\}^* \mid \text{has an equal number of 0's and 1's} \}
\]

Solution

The idea is that the head of our TM \(M \) moves back and forth on the tape, "deleting" one 0 for each 1; if there are no 0's and 1's in the end, the string is accepted.

When in state \(q_2 \), \(M \) has found a 1 and looks for a 0; in state \(q_2 \) it is the other way around.

Note that the head never moves left of any \(X \), so that there are never unmatched 0's and 1's on the left of an \(X \).

From initial state \(q_0 \), \(M \) picks up a 0 or a 1 and turns it into \(X \). The only final state is \(q_4 \). In state \(q_3 \), \(M \) moves head left looking for the rightmost \(X \).

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
 & 0 & 1 & \varepsilon & X & Y \\
\hline
q_0 & (q_2, x, R) & (q_2, x, R) & (q_4, x, R) & - & (q_0, y, R) \\
q_1 & (q_3, y, L) & (q_2, x, R) & - & - & (q_2, y, R) \\
q_2 & (q_2, 0, R) & (q_2, y, L) & - & - & (q_2, y, R) \\
q_3 & (q_3, 0, L) & (q_3, y, L) & - & (q_0, x, R) & (q_3, y, L) \\
q_4 & - & - & - & - & - \\
\hline
\end{array}
\]