5. Reasoning in Description Logics

Exercise 5.1 Let T be a TBox consisting of concept inclusions of the form $A_1 \sqsubseteq A_2$ and concept disjointness assertion of the form $A_1 \sqsubseteq \neg A_2$, for atomic concepts A_1 and A_2.

Describe an algorithm for checking concept satisfiability with respect to T, i.e., whether for some concept A it holds that A is satisfiable with respect to T.

Exercise 5.2 Consider TBoxes T consisting of axioms of the form $B_1 \sqsubseteq B_2$, where $B_1, B_2 ::= A \mid \exists R \mid \exists R^-$, A denotes an atomic concept, and R an atomic role.

1. Describe an algorithm for checking subsumption with respect to a given T, i.e., whether for two concepts B_1 and B_2 it holds that $T \models B_1 \sqsubseteq B_2$.
2. Let $A = \{A_0(a)\}$ and T a(n arbitrary) TBox of the above form. Can we determine whether $\langle T, A \rangle$ is satisfiable?

Exercise 5.3 Show that concept satisfiability in ALC is NP-hard.

Hint: show the claim by reduction from SAT.

Exercise 5.4 Let q_n, for $n \geq 2$, be a Boolean conjunctive query with n existential variables of the form $\exists x_1, \ldots, x_n. P(x_1, x_2) \land \cdots \land P(x_{n-1}, x_n)$. Given $n \geq 2$:

1. construct an ALC KB K_n such that $K_n \models q_n$.
2. construct an ALC KB K'_n of size polynomial in n such that $K'_n \models q_n$ and $K'_n \not\models q_{2^n+1}$.

Hint: K'_n “implements” a binary counter by means of n atomic concepts representing the bits of the counter, and such that the models of K'_n contain a P-chain of objects of length 2^n.