Exercise: (Section 3.3.2 from textbook)
Consider the following languages over $\Sigma = \{0, 1\}$

\[L_e = \{ \mathcal{E}(M) \mid \mathcal{L}(M) = \emptyset \} \]
\[L_{\neg e} = \{ \mathcal{E}(M) \mid \mathcal{L}(M) \neq \emptyset \} \]

Hence: L_e is the set of all strings that encode TMs M that accept the empty language.
$L_{\neg e}$ is the complement of L_e.

Claim 4: $L_{\neg e}$ is R.E.

Proof: construct NTM N for $L_{\neg e}$.

(And then convert N to an ordinary TM.)

N works as follows: on input $\mathcal{E}(M)$

1) guess a string $w \in \Sigma^*$
2) simulate M on w (like a UTM)
3) accept $\mathcal{E}(M)$ if M accepts w.

\[\mathcal{E}(M) \xrightarrow{\text{guessed } w} U \xrightarrow{\text{yes}} \text{yes} \]

We have $\mathcal{E}(M) \in L_{\neg e} \iff \exists w \text{ s.t. } \langle M, w \rangle \in \mathcal{L}(U)$
\[\iff \exists w \text{ s.t. } w \in \mathcal{L}(M) \]
\[\iff \mathcal{E}(M) \in L_{\neg e} \]
Claim 2: \(L_{ne} \) is non-recursively

Proof: by reduction from \(L_{M_0} \) to \(L_{ne} \)

Reduction \(R \) is a function computable by a halting T.M.

Input: instance \(\langle M, w \rangle \) of \(L_{M_0} \)

Output: instance \(\varepsilon(M') \) of \(L_{ne} \)

End set: \(\langle M, w \rangle \in L_{M_0} \iff \varepsilon(M') \in L_{ne} \)

Description of \(M' \):

- \(M' \) ignores completely its own input string \(X \)
- instead, it replaces its input by the string \(\langle M, w \rangle \) and runs \(M \) on \(w \) (see (*) below)
- if \(M \) accepts \(w \), then \(M' \) accepts \(X \)
- if \(M \) never halts on \(w \) or rejects \(w \), then \(M' \) also never halts on \(w \) or rejects \(X \)

Note:
- if \(w \in L(M) \Rightarrow L(M') = \Sigma^* \)
- if \(w \notin L(M) \Rightarrow L(M') = \emptyset \)

hence \(\langle M, w \rangle \in L_{M_0} \iff \varepsilon(M') \in L_{ne} \)

We can construct a halting T.M. \(M_R \) that, given \(\langle M, w \rangle \) as input, constructs \(\varepsilon(M') \) for an \(M' \) that behaves as above. q.e.d.

(*) \(M' \) has the following form:

\[
\begin{array}{c}
\text{Input } X \\
\text{writes } w \text{ on the tape} \\
\text{go to the beginning of } w \\
\text{runs } M \text{ on } w
\end{array}
\]

To sum up, we have that \(L_{ne} \) is RE but non-recursively.
Hence \(L_{ne} \) must be non-RE.
Exercise 3.2.1

The halting problem, \(\mathcal{H} \), is the set \(\langle M, w \rangle \) s.t.

\(M \) halts on \(w \) (with or without accepting) is \(\text{R.E.} \)

but not \(\text{recursive} \).

To show \(\text{R.E.} \), we construct a T.M. \(H \) s.t.

\(L(H) := L_H = \{ \langle M, w \rangle \mid M \text{ halts on } w \} \)

\[
\begin{array}{ccc}
\langle M, w \rangle & \rightarrow & H \\
& \uparrow & \uparrow \\
& \text{halts and says } & \text{yes} \\
& \text{no} & \\
\end{array}
\]

To show that \(L_H \) is not \(\text{recursive} \), we assume by contradiction it is \(\text{R.E.} \), and derive that \(L_H \) is \(\text{recursive} \).

By contradiction, let \(H \) be an algorithm for \(L_H \) and \(U \) a procedure for \(L_H \)

\[
\begin{array}{ccc}
\langle M, w \rangle & \rightarrow & H \\
& \uparrow & \uparrow \\
& \text{yes} & \text{triggers} \\
& \text{no} \\
\end{array}
\]

\(A_u \)

\(A_u \) would be an algorithm for \(L_H \).

\(\text{Contradiction} \)
Let L be R.E. and \overline{L} be non-R.E.

Consider $L' = \{0w \mid w \in L\} \cup \{1w \mid w \not\in L\}$.

What do we know about L' and $\overline{L'}$?

We show that L' is non-R.E.

Suppose by contradiction that we have a procedure M_L for L'.

Then we can construct a procedure $M_{\overline{L}}$ for \overline{L} as follows:

- on input w, $M_{\overline{L}}$ changes the input to $1w$ and simulates M_L.

 - if M_L accepts $1w$, then $w \in \overline{L}$, and $M_{\overline{L}}$ accepts
 - if M_L does not terminate or terminates and answers no, then $w \not\in \overline{L}$, and $M_{\overline{L}}$ does not terminate or terminates and answers no.

$\Rightarrow M_{\overline{L}}$ would accept exactly \overline{L}. Contradiction.

$\overline{L}' = \{0w \mid w \in L\} \cup \{1w \mid w \not\in L\} \cup \{\epsilon\}$.

Reasoning as for L', we get that \overline{L}' is non-R.E.
Fl, the complement of the halting problem, i.e.,
the set of pairs $\langle M, w \rangle$ such that M on input w
does not halt, is non-$R.E.$.

Proof: By reduction from Fin, which is non-$R.E.$.

Idea: we show how to convert any TM M into another
TM M_\perp s.t. M_\perp halts on w iff M accepts w.

Construction:

1) Ensure that M_\perp does not halt unless M accepts.
 - add to the states of M a new loop state q_0, with
 $\delta(q_0, x) = (q_0, x, r)$ for all $x \in \Gamma$
 - for each $\delta(q, y) \text{ that is undefined and } q \in F$,
 add $\delta(q, y) = (q_0, y, r)$

2) Ensure that, if M accepts, then M_\perp halts
 - make $\delta(q, x)$ undefined for all $q \in F$ and $x \in \Gamma$

3) The other moves of M_\perp are as those of M.

$q.e.d.$