COURSE PRESENTATION FORM - ACADEMIC YEAR 2011 / 2012

COURSE NAME: Theory of Computing

COURSE CODE: 72001 (MSc New – DM 270) / 70101 (MSc Old – DM 509)

LECTURER: Diego Calvanese

TEACHING ASSISTANT: --

TEACHING LANGUAGE: English

CREDIT POINTS: 8

LECTURE HOURS: 48

EXERCISE HOURS: 24

OFFICE HOURS: See http://www.inf.unibz.it/~calvanese/teaching/, Faculty of CS, POS Building, piazza Domenicani 3, office 2.19.

PREREQUISITES: There are no prerequisites in terms of courses to attend. Students should be familiar with notions of mathematics and set theory, and with basic proof techniques, as taught in the mathematics courses of a bachelor in computer science.

OBJECTIVES: The objective of the Theory of Computing course is to introduce and study abstract, mathematical models of computation (such as Turing machines, formal grammars, recursive functions), and to use the abstract computation models to study the ability to solve computational problems, by identifying both the intrinsic limitations of computing devices, and the practical limitations due to limited availability of resources (time and space). A second objective is to show how to reason and prove properties about computations in a precise, formal, abstract way.

SYLLABUS: Formal languages, Turing Machines, recursive functions, undecidability, computational complexity, NP-completeness, time and space complexity classes, non-uniform computing models.

TEACHING FORMAT: Frontal lectures; exercises in class.

ASSESSMENT: Midterm or final examination on the first half of the syllabus (50%) + final examination on the second half of the syllabus (50%). The two parts of the examination can be taken independently of each other within the three exam sessions of an academic year. Each part of the examination may be either written or oral. For more details on the exam...
rules, consult the course web page.

READING LIST

Textbooks:

Further reading material:

SOFTWARE USED

None

LEARNING OUTCOME

After the course, students will know the fundamental models of computation, and the intrinsic and practical limitations of computing devices. They will also be familiar with formal techniques of computer science, and will be able to formally prove properties about computations.

COURSE PAGE

http://www.inf.unibz.it/~calvanese/teaching/tc/