Question: Using a counting argument, we have seen that there are functions that cannot be computed (or, in other words, problems that cannot be solved by any algorithm).

How can we exhibit a specific problem of this form?

Solution: we need a formal definition of algorithm.

Let us start with something we know: Java.

Can we show that there is no Java program that solves a specific problem?

Hello - World problem:

Your first Java program: HW:

```java
public class HW {
    public static void main(String[] args) {
        System.out.println("Hello, world");
    }
}
```

The first 12 characters output by HW are "Hello, world".

Hello - world problem (HWP): Given an arbitrary Java program P and an input I for P, does P(I) print "Hello, world" as its first 12 characters?
Consider a solution to HWP:

```
\[ P \rightarrow H \rightarrow \text{"yes"} \rightarrow \text{"no"} \rightarrow \text{output} \]
```

Input

Does such a program \(H \) exist?

- We could see \(P \) for println statements
- But, how do we know whether they are executed?

To give you an idea how difficult this can become, consider Fermat's last theorem:

The equation \(x^n + y^n = z^n \) has no integer solution for \(n \geq 3 \).

For \(n=2 \): A solution is \(x=3, y=4, z=5 \)

For \(n \geq 3 \): Mathematicians have believed that the theorem is true, but no proof was found until recently (proof given by Wiles is very complex, and still under verification)

Consider a simple Java program \(P_1 \) that:

1) reads input \(n \)
2) for all possible \(x, y, z \) do
 if \((x^n + y^n = z^n) \)
 println ("Hello, world!");

Consider input \(n=3 \): \(P_1 \) prints "Hello, world!" only if F.L.T. is false, otherwise \(P_1 \) loops forever.
If we could solve HWP, we would also have proved or disproved F.L.T.

This would be too nice!! Where is the problem?

Theorem: There is no Java program H that decides HWP.

Proof: Assume H exists and derive a contradiction.

Consider H:

\[
\begin{array}{c}
P \\
\text{H} \\
I \\
\rightarrow \text{"no" on}
\end{array}
\]

We modify H to H₁, s.t. H₁ prints "Hello, world" instead of "no"

\[
\begin{array}{c}
P \\
\text{H₁} \\
I \\
\rightarrow \text{"yes"}
\end{array}
\]

Hello, world

(Note: we have to modify the println statements in H)

We modify H₁ to H₂, which takes input P and feeds it to H₁ as both P and I:

\[
\begin{array}{c}
P \\
\rightarrow \text{Buffer} \\
\rightarrow \text{H₁} \\
\rightarrow \text{"yes" (when P(P) = "Hello, world")}
\end{array}
\]

\[
\begin{array}{c}
\text{"Hello, world" (when P(P) ≠ "Hello, world")}
\end{array}
\]

Set us consider H₂(P) when P = H₂:

- Suppose H₂(H₂) = "yes" \(\Rightarrow\) P(P) = "Hello, world"
- Suppose H₂(H₂) = "Hello, world" \(\Rightarrow\) P(P) ≠ "Hello, world"

But P = H₂ \(\Rightarrow\) contradiction \(\Rightarrow\) H₁, H₂ cannot exist! Q.e.d.
We have shown HWP to be undecidable, i.e., there cannot be an algorithm (or a program) that solves it.

We can show that other problems are undecidable by "reducing" HWP to them.

Reductions

foo-problem: given a program \(R \) and its input \(z \), does \(R \) ever call a function named \(\text{foo} \) while executing on input \(z \).

Idea: we reduce the HWP to the foo-problem, i.e., we show that if it's possible to solve the foo-problem on \((R, z) \), then we can solve HWP on \((Q, y) \), for any program \(Q \) with input \(y \).

Since HWP is undecidable, so is the foo-problem.

Suppose there is a program \(F \) that takes as input \((R, z) \) and decides the foo-problem for \((R, z) \). We show how \(F \) can be used to construct \(H \) that decides HWP on input \((Q, y) \).
Idea: apply modifications to Q.

1) remove function foo in Q (if present) to Q_1.

2) add a dummy function foo to Q_1 to Q_2.

3) modify Q_2 to store all its output in some array A to Q_3.

4) modify Q_3 so that after every println statement it checks array A to see if "Hello, world" has been printed. If yes, then call function foo to Q_4.

Note: We can write a Java program that takes as input a Java source file and modifies it as specified above.

Let $R = Q_4$ and $z = y$.

We have by construction:

- $Q_4(y)$ prints "Hello, world".
- $R(z)$ calls function foo.

Hence, we can use F that solves foo-circle problem on $R(2)$ to construct H that solves HWP on $Q_4(y)$.

Schematically:

\[
(Q, y) \xrightarrow{\text{construct } (R, z) \text{ from } (Q, y)} (R, z) \xrightarrow{F} \xrightarrow{\text{"yes" or "no"}}
\]

But: since H does not exist, also F cannot exist.

Q.E.D.
Showing undecidability by reduction from undecidable problem:

Problem P_1 taking input I_1, known to be undecidable

Reduced P_2 to I_2 to show undecidable.

Reduction: convert I_1 to I_2 such that

$P_1(I_1) = \text{"yes"}$ if $P_2(I_2) = \text{"yes"}$

Given solution program S_2 for P_2, we could obtain

S_2 for P_1

Since S_1 does exist, we obtain that S_2 cannot exist

$\Rightarrow P_2$ is undecidable.

Existence of undecidable problems:

While it is tricky to show that a specific problem is undecidable, it is rather easy to show that there are infinitely many undecidable problems.

We use a counting argument:

- A problem P is a language over Σ (for some finite Σ)

 (the strings in the language represent those instances of P for which the answer is "yes")

 \Rightarrow there are uncountably many problems

- An algorithm is a string over Σ' (for some finite Σ')

 \Rightarrow there are countably many algorithms

 \Rightarrow there must be (uncountably many) problems for which there is no algorithm.
Turing Machines

Java (or C, Pascal, ...) programs are not well-suited to develop a theory of computation:
- run-time environment and run-time errors
- complex language constructs
- finite memory
- "state" of the computation is complicated to represent
- would need to show that the results for a specific programming language are in fact general

⇒ We resort to an abstract computing device, the Turing Machine (TM)
- simple and universal programming language
- state of computation is easy to describe
- unbounded memory
- can simulate any known computing device

Church-Turing hypothesis:

All reasonably powerful computation models are equivalent to TMs (but not more powerful).

⇒ TMs model anything we can compute.
The TM:

- infinitely tape
- read/write head
- finite state control

Programmed by specifying transitions:
- move depends on:
 - current state (finite by many)
 - symbol under the tape head

Effects of a move:
- new state
- write new symbol on tape cell under the head
- move head left/right/stay

Observations:
- relationship to real computers:
 - CPU -> finite state control
 - memory -> tape

"differences" (features lost in the abstraction):
- no random access memory
- limited instruction set

Hence: a TM can simulate a computer (with a cubic increase in running time — see book 8.6)
Definition \(D \) TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, \emptyset, F) \):

- \(Q \) is a set of states (finite) \(q_0 \in Q \) is initial state
- \(\Sigma \) is input alphabet (finite)
- \(\Gamma \) is tape alphabet (finite)
- \(F \subseteq Q \) are final states \(\emptyset \in \Gamma \) is blank symbol

Conditions: \(\Sigma \subseteq \Gamma \), since input is written initially on tape.
\(\Gamma = \Gamma - \Sigma \), since the rest of the tape is blank.

Initially:
- state \(q_0 \)
- tape contains \(w \) surrounded by \(\epsilon \)
- tape head is at the leftmost cell of the input

Transitions:
\(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R,S\} \)

\(\delta(q, \alpha) = (q', \gamma, d) \) means that

- if \(M \) is in state \(q \) and tape head is over symbol \(\alpha \),
- then \(M \) changes state to \(q' \)
- replaces \(\alpha \) by \(\gamma \) on the tape
- moves tape head by one cell in direction \(d \)
 - (left for \(L \), right for \(R \), \(S \) for stay in place)

The TM is deterministic:
- for each \(\delta(q, \alpha) \) we have at most one move
- \(\delta(q, \alpha) \) could also be undefined

Acceptance: \(w \) is accepted by TM \(M \) if \(M \), when started with \(w \)
in on the tape, eventually enters a final state.

We can assume that all final states are halting, i.e., no transition is defined for them.

Rejection: halts in non-final state (i.e., no transition defined)
- never halts (infinite loop)
Difference between FA/PDA and TM:

FA/PDA means over \(w \) and accepts/rejects when it has reached its end

TM can move back and forth over \(w \) and accepts/rejects when it halts or rejects if it loops forever

Example: \(L = \{ w \#^* w \mid w \in \{0, 1\}^+, \# \in \{0, 1, \#\}^* \} \)

Initially

\[
\ldots \# \ldots w \ldots \# \ldots \# \ldots w \ldots \# \ldots
\]

TM idea: remember (in the state) leftmost symbol, and erase it
- move to leftmost symbol after \(\# \)'s
- if the two don't match, then reject
- otherwise replace the symbol by \(\# \), move left and start again

\(M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F) \)

\(Q = \{ q_0, q_1, \ldots, q_7 \} \)

\(\Sigma = \{ 0, 1, \# \} \)

\(\Gamma = \{ 0, 1, \#, \ldots \} \)

\(F = \{ q_7 \} \)

\[
\begin{align*}
\delta(q_0, 0) &= (q_1, \#, R) \quad \text{[These 0 and look for matching 0]} \\
\delta(q_0, 1) &= (q_2, \#, R) \\
\delta(q_1, 0) &= (q_1, 0, R) \\
\delta(q_1, 1) &= (q_1, 1, R) \\
\delta(q_1, \#) &= (q_3, \#, R) \\
\delta(q_2, 0) &= (q_2, 0, R) \\
\delta(q_2, 1) &= (q_2, 1, R) \\
\delta(q_2, \#) &= (q_4, \#, R)
\end{align*}
\]

- \(\ldots \) (remembering 0)

- \(\ldots \) (remembering 1)
\[\delta(q_3, \#) = (q_3, \#, R) \]
\[\delta(q_3, 0) = (q_5, \#, L) \}

Skip over \#'s, look for 0, 1, and replace it by \#.

Note: if after \#'s a 1 or a 0 is found, M halts and rejects.

\[\delta(q_4, \#) = (q_4, \#, R) \]
\[\delta(q_4, 1) = (q_5, \#, L) \}

As previous ones, replacing 0/1 with 1/0.

\[\delta(q_5, \#) = (q_5, \#, L) \]
\[\delta(q_5, 0) = (q_6, 0, L) \]
\[\delta(q_5, 1) = (q_6, 1, L) \]
\[\delta(q_5, \#) = (q_7, \#, Q) \}

Move left skipping \#’s.

\[\delta(q_6, 0) = (q_6, 0, L) \]
\[\delta(q_6, 1) = (q_6, 1, L) \]
\[\delta(q_6, \#) = (q_0, \#, R) \}

Move left, skipping 0/1’s and 1/0’s, and restart again.

Transition diagram

\[\delta(q, x) = (q, y, d) \]
Immeasurable description (I.D.) or configuration of e TM

describes the current situation of TM and tape.

$$I.D. = \alpha_1 \cdot q \cdot \alpha_2$$ with $q \in Q$

$$\alpha_1, \alpha_2 \in \Gamma^*$$

means:
- non-blank portion of tape contains α_1, α_2
- head is on leftmost symbol of α_2
- machine is in state q

corresponds to

$$\begin{array}{c}
\text{BLANKS} \\
\alpha_1 \\
\alpha_2 \\
\text{BLANKS}
\end{array}$$

Set $ID = \Gamma^* \times Q \times \Gamma^*$ be the set of instantaneous descriptions.
We use a relation $\delta : M \in ID \times ID$ to describe the transitions of a TM. M.
(when M is clear from the context, we abbreviate δ with δ)

Example:

$$\begin{align*}
q_0 \# 01 & \rightarrow q_1 \# 01 \rightarrow 1 q_1 \# 01 \\
1 \# q_3 \# 01 & \rightarrow 1 q_3 \# 1 \\
q_5 \# 1 \# 1 & \rightarrow q_6 \# 1 \# 1 \\
q_0 \# 1 \# 1 & \rightarrow \ldots \\
q_5 \# 1 \# 1 \# 1 & \rightarrow q_7 \# 1 \# 1 \# 1 \quad \text{accepts}
\end{align*}$$

Note: we can define δ formally, making use of S. [Exercise]

Making use of the closure Γ^* of Γ, we can define the language accepted by a TM

Definition: Let $M = (Q, \Sigma, \Gamma, S, q_0, \#, F)$ be a TM.

Then the language $L(M)$ accepted by M is

$$L(M) = \{ w \in \Sigma^* \mid q_0 \# w \xrightarrow{*} \alpha \alpha_1 q \alpha_2 \text{ with } q \in F \text{ and } \alpha_1, \alpha_2 \in \Gamma^* \}$$
Relation \(T_M \in \text{ID} \times \text{ID} \) describes the move of a TM.

\[
M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)
\]

where \(\text{ID} = \Pi^* \times Q \times \Gamma^* \)

- Let \(S(q, K) = (p, y, L) \) be a leftward move of \(M \)

Then \(K_0 \ldots K_{i-1} q K_i K_{i+1} \ldots K_n \to M K_0 \ldots K_{i-2} p K_i \ldots K_m \ldots K_n \)

Note: the head is now at cell \(i-1 \)

There are two exceptions to this general case

1) If \(i = 1 \), then \(M \) moves to the blank to the left of \(K_1 \)

\[q K_0 \ldots K_n \to M \uparrow BYK_i \ldots K_n \]

2) If \(i = n \) and \(y = B \), then the symbol \(B \) written over \(K_n \)

is not represented in the resulting ID

\[K_0 \ldots K_{n-1} q K_n \to M K_0 \ldots K_{n-2} p K_{n-1} \]

Similarly, we can define when \(ID_1 \to_M ID_2 \) for a rightward move \(S(q, K) = (p, y, R) \) of \(M \)

[Scenario]
1) We have used TMs for language recognition, which in turn corresponds to solving decision problems.
 - We can, however, consider also TMs as computing functions.
 - The output (result of the function) is left on the tape.

2) The class of languages accepted by TMs are called recursively enumerable:
 - For a string w in the language:
 - The TM halts on input w in a final state.
 - For a string w not in the language:
 - The TM may halt in a non-final state, or
 - It may loop forever.

Those languages for which the TM always halts (regardless of whether it accepts or not) are called recursive:
 - These languages correspond to recursive functions.
 - TMs that always halt are a good model of algorithms and they correspond to decidable problems.
We present some notational conveniences that make it easier to write TM programs.

Idea: use structured states and tape symbols

1) Storage in the state: ('CPU register')
 Idea: state names are a triple of the form [q, D_l, ..., D_k]
 D_l: ...act as stored symbol
 q: ...control portion of the state

Example: TM $M = (Q, \Sigma, \Gamma, s, q_0, \emptyset, F)$ for $L = 01^* + 10^*$
 Idea: M remembers the first symbol and checks that it does not reappear
 $Q = \{ [q_i, e] | i \in \{0, 1\}, \ e \in \{0, 1, \#\} \} =$
 $\{ [q_0, -], [q_0, 0], [q_0, 1], [q_0, -], [q_1, 0], [q_1, 1] \}$
 $\Sigma = \{0, 1\}$
 $\Gamma = \{0, 1, \#\}$
 $q_0 = [q_0, \#]$ $\emptyset = \{ [q_1, -] \}$

Meaning of $[q_i, e]$
- control portion q_i:
 \begin{itemize}
 \item q_0: M has not yet read its first symbol
 \item q_1: M has read its first symbol
 \end{itemize}
- data portion e: e is the first symbol read
transitions:

\[\delta([q_0, z], e) = ([q_1, e], e, R) \], for \(e \in \{0, 1\} \)

- \(M \) remembers in \([q_0, e]\) that it has read \(e \)

\[\delta([q_1, 0], 1) = ([q_1, 0], 1, R) \] \(M \) moves right as long as it does not see the first symbol.

\[\delta([q_1, 1], 0) = ([q_1, 1], 0, R) \] \(M \) accepts when it reaches the first \(y \).

2) Multiple tracks:

Idea: view tape as having multiple tracks, i.e. each symbol in \(\Gamma \) has multiple components.

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>0</th>
<th>*</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

the symbols on the tape are \([0], [1], [z] \]

Example: \(L = \{ ww \mid w \in \{0, 1\}^+ \} \)

We first need to find midpoint, and then we can match corresponding symbols.

To find midpoint: we view tape as 2 tracks

\[
\begin{array}{ccccccc}
 & 0 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\(\text{used to put markers on symbols} \)

Hence: \(\Gamma = \{ [y], [y], [z], [1], [x], [x] \} \)

(note: we need no * over \(y \))
We put markers on two outermost symbols and move them inwards:

\[
\begin{align*}
\delta(q_0, [b]) &= (q_0, [\ast], R) \quad \text{move right till end} \\
\delta(q_1, [b]) &= (q_1, [\ast], R) \quad \text{on first marked symbol} \\
\delta(q_1, [b]) &= (q_2, [\ast], L) \quad \text{move rightmost mark one symbol to the left} \\
\delta(q_1, [\ast]) &= (q_2, [\ast], L) \\
\delta(q_2, [\ast]) &= (q_3, [\ast], L) \quad \text{move left till end} \\
\delta(q_3, [\ast]) &= (q_3, [\ast], L) \\
\delta(q_3, [b]) &= (q_0, [\ast], R) \quad \text{on first marked symbol}
\end{align*}
\]

Note: we have each of the above for \(i \in \{0, 1\} \)

At the end: head is over first symbol of second \(w \), with a \(\ast \) above it, in state \(q_0 \).

3) Subroutines / procedure calls

Example: shifting over

Given: \(ID_1 = \alpha \cdot q_i \cdot \beta \)

Want: \(ID_2 = \alpha \cdot \Box \cdot q_i \cdot \beta \)

Subroutine for shifting over can be used repeatedly to create space in the middle of the tape

E.g. to implement a counter

\[
\begin{align*}
\text{@0} \, \rightarrow \, \text{@1} \, \rightarrow \, \text{@0 \text{1}} \, \rightarrow \, \text{@0 \text{10}} \\
\rightarrow \, \text{@1 \text{1}} \, \rightarrow \, \text{@0 \text{11}} \, \rightarrow \, \text{@0 \text{111}} \, \rightarrow \, ...
\end{align*}
\]
Procedure call: \(\delta(q_i, \chi) = ([q, \chi], \emptyset, R), \forall \chi \in \Gamma \)
- remember return state \(q_i \), read erased symbol \(\chi \)
- state \(p \) calls procedure

Procedure \(p \) for shifting

1) shift 1 cell to the right
\(\delta([p, \chi], y) = ([p, y], \chi, R), \forall \chi, y \in \Gamma \) with \(y \neq \emptyset \)

2) till we have reached end of \(\beta \)
\(\delta([p, y], \emptyset) = (q, y, L), \forall y \in \Gamma \)

3) return to calling point by moving left
\(\delta(q, y) = (q, y, L), \forall y \neq [\emptyset] \)

4) exit and return to state \(q_0 \)
\(\delta(q, [\emptyset]) = (q_0, \emptyset, R) \)

In fact, we can implement arbitrary complex procedures, with any kind of parameter passing.

Exercise: redesign the TMs you have seen so far to take advantage of storage in the state, multiple tracks, and subroutines.

Exercise Implement a procedure call to copy a string to the end of the input, i.e. given \(\Delta_1 = \alpha \beta q_i \beta \beta \gamma \)
we want \(\Delta_2 = \alpha \beta q_i \beta \beta \gamma \beta \beta \beta \)
Example of computation for shifting over

State

\[q_0 \rightarrow 1 \ 0 \ 0 \ 0 \ 0 \ a \ b \ c \ y \]

we want to place 0 after the 0's

\[\delta(q_0, a) = ([q, a], [8], R) \]

\[\delta([q, a], b) = ([q, b], a, R) \]

\[\delta([q, b], c) = ([q, c], b, R) \]

\[\delta([q, c], z) = ([q, c], z, \text{L}) \]

\[\delta(q_1, x) = (q_1, x, \text{L}) \]

\[\delta(q_1, [8]) = (q_2, \text{D, R}) \]

\[q_2 \rightarrow 1 \ 0 \ 0 \ 0 \ 0 \ a \ b \ c \ y \]

\[\delta(q_2, [8]) = (q_3, \text{D, R}) \]

\[q_3 \rightarrow 1 \ 0 \ 0 \ 0 \ 0 \ a \ b \ c \ y \]
Note: if the TM seen so far can compute all that can be computed, then it should not become more expressive by extending it.

We consider two extensions: multiple tapes, nondeterminism, and show that both can be captured by the basic T.M.

1) Multi-tape T.M.

Initially: input \(w \) is on tape 1 with tape head on the leftmost symbol. Other tapes are all blank.

Transitions: specify behaviour of each head independently

\[\delta(q, x_1, \ldots, x_h) = (q_1, (y_1, d_1), \ldots, (y_h, d_h)) \]

\(x_i \ldots \) symbol under head \(i \)
\(y_i \ldots \) new symbol written by head \(i \)
\(d_i \ldots \) direction in which head \(i \) moves
To simulate a 2-tape TM M_k with a 1-tape TM M_1, we use 2k tracks in M_1:
- one track of M_1 to store tape content
- one track of M_1 to mark head position with $*$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each transition of M_k is simulated by a series of transitions of M_1: $\delta(q, \kappa_1, \ldots, \kappa_k) = (p_1, (y_1, d_1), \ldots, (y_k, d_k))$

- Start at leftmost head-position marker
- Sweep right and remember in appropriate "CPU registers" the symbols κ_i under each head (note: there are exactly k, and hence finitely many)
- Knowing all κ_i's, sweep left, change each κ_i to y_i, and move the marker for tape i according to d_i

Note: M_1 needs to remember always how many of the k heads are to its left (uses an additional CPU-register)

The final states of M_1 are those that have in the state-component a final state of M_k.

We can verify that we can construct M_1 so that $L(M_1) = L(M_k)$

(details are straightforward, but cumbersome)

Exercise: Provide the details of the construction to convert a 2-tape TM to a 1-tape TM.
Simulation speed:

Note: enhancements do not affect the expressive power of e TM
- they do affect its efficiency

Definition: a TM is said to have running time $T(m)$ if it halts within $T(m)$ steps on all inputs of length m.

Note: $T(m)$ could be infinite

Theorem: If M_k has running time $T(m)$, then M_1 will simulate it with running time $O(T(m)^2)$.

Proof: Consider input w of length m.
- M_k runs at most $T(m)$ time on it.
- At each step, leftmost and rightmost heads can drift apart by at most 2 additional cells.
- It follows that after $T(m)$ steps the k heads cannot be more than $2 \cdot T(m)$ apart, and M_k uses $\leq 2 \cdot T(m)$ tape cells.

Consider M_1:
- makes two sweeps for each transition of M_k
- each sweep takes at most $O(T(m))$
- number of transitions of M_k is $\leq T(m)$

It follows that the total running time is $O(T(m)^2)$.
2) Non-deterministic TMs (NTM)

In a (deterministic) TM, $\delta(q, x)$ is unique or undefined.

In a NTM, $\delta(q, x)$ is a finite set of triples:

$$\delta(q, x) = \{(p_1, y_1, d_1), \ldots, (p_k, y_k, d_k)\}$$

At each step, the NTM can non-deterministically choose which transition to make.

As for other ND devices: a string w is accepted if the NTM has at least one execution leading to a final state.

Sample: $\Sigma = \{0, 1, \ldots, 3\}$

$L = \{w \in \Sigma^* \mid x \in \Sigma \text{ appears } n \text{ times to the left of some } y \text{ in } w, \\
\text{with } 0 < i \leq 3\} = \\
\{w \in \Sigma^* \mid \exists j > 0 \text{ s.t. } w_{i-j} - w_j = 0\}$

(w_i indicates the i-th character of w)

Ex: 02146 $\in L$

58108554421 ...
01234367880 ...
$w_2=4$
$w_5 = w_{5+4} = 0$

NTM $N: \delta, S(M) = L$

$Q = \{q_0, f, [q, 0], [q, 1], \ldots, [q, 3]\}$

$F = \{f\}$

$\Gamma = \{0, 1, \ldots, 3, \#\}$
Idea for \(N \): scan \(w \) from left to right,
- guess at some \(w_j = i \),
- store \(i \) in CPU register, and
- move \(i \) steps left to find 0

Transitions:
- \(\delta(q_0, 0) = \{(q_0, 0, R)\} \) (since \(w_j > 1 \))
- \(\forall i > 0: \delta(q_0, i) = \{(q_0, i, R), ([q, i], i, L)\} \)

- \(\forall i \geq 2, \forall x \in \Gamma: \delta([q, i], x) = \{[q, i-1], x, L\} \)
- \(\text{accepting: } \delta([q, 1], 0) = \{(q, 0, R)\} \)

Execution traces on input \(w = 103332 \)

\[
q_0103332 \rightarrow q_00103332 \leftarrow 10q_03332 \rightarrow 103q_0332 \leftarrow \\
\quad 1001332 \leftarrow 10320332 \leftarrow 101103332 \\
= \text{reject}
\]

\[
q_0103332 \rightarrow 1033932 \rightarrow 1033932 \leftarrow 10333[1, 3]332 \leftarrow \\
\quad 10[1, 2]3332 \leftarrow 1[1, 1]03332 \leftarrow 10[1, 1]3332 \\
= \text{accept}
\]

Theorem: Let \(N \) be a NTM. Then there exists a DTM \(D \) s.t.: \(L(D) = L(N) \)

Proof: Given \(N \) and \(w \), we show how a multi-tape DTM can simulate the execution of \(N \) on input \(w \). We can then convert the multi-tape DTM to a single-tape DTM.
Idea for the simulation:

Consider the execution tree of \(N \) on \(w \)

\[
\begin{align*}
ID_0 &= \text{q}_0 \cdot w \\
ID_1 &\rightarrow D_{10} \\
ID_2 &\rightarrow D_{21} \\
ID_3 &\rightarrow D_{31} \\
\end{align*}
\]

DTM \(D \) will perform a breadth-first search of the execution tree, systematically enumerating the \(ID_0 \), until it finds an accepting one.

We use **two tapes**:

- **Tape 2**: is for working
- **Tape 1**: contains a sequence of ID's of \(N \) in BFS order
 - * used to separate two ID's
 - ^ marks next ID to be explored
 - ID's to the left of ^ have been explored
 - ID's to the right of ^ are still to be explored

- Initially, only \(ID_0 = \text{q}_0 \cdot w \) is on the tape
- we can use multiple tracks for convenience
Algorithm: repeat the following steps

Step 0: examine current \(ID_c \) (the one after \(\ast \)) and read \(q, \varepsilon \) from it

- If \(q \in F \), then accept and halt

Step 1: let \(\delta(q, \varepsilon) \) have \(k \) possible transitions

- copy \(ID_c \) onto tape 2
- make \(k \) new copies of \(ID_c \) and place them at the end of tape 1

Step 2: modify the \(k \) copies of \(ID_c \) on tape 1 to become the \(k \) possible outcomes of \(\delta(q, \varepsilon) \) on \(ID_c \)

Step 3: move \(\ast \) right past \(ID_c \).

- clean up tape 2
- return to step 0

It is possible to verify:

- the above steps can all be implemented on a DTM
- the construction is correct, i.e. \(w \in L(D) \) iff \(w \in L(N) \)

Evolution of tape 1:

1) \(\ast ID_0 \ast \)
2) \(\ast ID_0 \ast ID_0 \ast ID_0 \ast ID_0 \ast \)
3) \(\ast ID_0 \ast ID_1 \ast ID_2 \ast ID_3 \ast \)
4) \(\ast ID_0 \ast ID_1 \ast ID_2 \ast ID_3 \ast \)
5) \(\ast ID_0 \ast ID_1 \ast ID_2 \ast ID_3 \ast ID_4 \ast ID_5 \ast \)
6) \(\ast \ast ID_9 \ast ID_{12} \ast \)
7) \(\ast ID_0 \ast ID_4 \ast ID_2 \ast ID_3 \ast ID_11 \ast ID_{12} \ast \)
Simulation time:

Let NTM \(N \) have running time \(T(n) \).

What is the running time of \(D \)?

Let \(m \) be the maximum number of non-det. choices for each transition (i.e., the maximum size of \(\delta(q, x) \))

Consider execution tree of \(N \) on \(w \).

Let \(t = T(|w|) \) \(\Rightarrow \) exec. tree has at most \(t \) levels.

Size of the tree is \(\leq 1 + m + m^2 + \ldots + m^t \)

\[\leq \frac{m^{t+1} - 1}{m - 1} = O(m^t) \]

Thus \(D \) has at most \(O(m^t) \) iterations of steps 0-3.

Each iteration requires at most \(O(m^t) \) steps.

\(\Rightarrow \) total running time is \(m^{O(t)} \), i.e. exponential.