Exercise 1: Let A be an algorithm of space complexity $s(n)$. Show that there is an algorithm A' such that

1. $L(A) = L(A')$
2. A' has space complexity $s'(n) = O(s(n) + \log n)$
3. A' does not scan the input tape beyond the boundaries of the input

Proof: We proceed in two steps.

1) We prove that on input x, there is an algorithm A_x such that

- $L(A_x) = L(A)$
- A_x does not scan the input tape beyond location $2O(s(n) + \log n)$ from the input

This proof is analogous to the one that we did in class to show that a poly-space bounded (N)TM is equivalent to one that has running time $t(n) \leq Cq(n)$ with $q(n) = O(s(n))$ (where $s(n)$ is a polynomial space bound).

We showed $q(n) = 2s(n) + \delta$, where $\delta = |\Gamma| + |Q|$

In our case:

- $q(n) = 2s(n) + \delta = 2s(n)$

- We have also the position on the input tape that contributes to the configuration:

$$2O(s(n)) = 2\log_2 2O(s(n)) = 2O(s(n) + \log n)$$

- Different configurations at most

Note: A TM with running time $t(n) \leq O(s(n) + \log n)$ can scan at most $2O(s(n) + \log n)$ cells of the input tape.
2) We modify the algorithm A in such a way that it does not move beyond the input.

The resulting algorithm A' works as follows:
- Whenever A would move right past the end of the input, A' instead:
 - does not move past the end of the input, but maintains a counter on the work tape.
 - whenever A moves right, the counter is incremented; left, decremented

In this way, A' can keep track of the position of the input head of A.

Whenever A moves back again over the input symbol, A' does not update the counter (leaving it to 0).

A' operates similarly whenever A moves left past the beginning of the input.

How much space does the counter use?
Since A does not scan the input tape beyond $N(n) = 2^{O(n + \log n)}$ the counter takes $\log_2 N(n) = O(n(m) + \log n)$

Hence, the total space used by A' is:
$N(n) + O(N(n) \log 2) = O(N(n) + \log n)$
Exercise 2: Let A be an algorithm of space complexity S. Show that there is an algorithm A' such that

- A' computes the same function as A, i.e., $A'(w) = A(w) \forall w \in \{0,1\}^*$
- A' has space complexity $S'(n) = S(n) + O(\log l(n))$

where $l(n) = \max_{w \in \{0,1\}^n}|A(w)|$ is the size of the maximum output for input x of length n

- A' never overwrites on the same location of its output tape

Proof:

A' proceeds in successive iterations, each time simulating the whole computation of A:

In the i-th iteration, A' outputs the i-th bit of $A(x)$

When simulating A, in its i-th iteration, A' proceeds as follows:

- it does not directly (re)write on the output tape
- instead, it maintains on the work tape:
 - the counter i of the next output bit that will be written
 - the counter c of the bit that A is currently writing
 - the value of the bit written by A in position i
- when A would write an output bit, A' operates depending on the values of i and c:
 - if $i \neq c$, then A' does not output anything
 - if $i = c$, then A' stores the written bit on its worktape

At the end of its simulation, A' outputs the stored bit to the i-th position of the output tape
How much space \(S(n) \) does \(A \) use on the working tape for inputs of length \(n \)?

- \(S(n) \) cells, since it performs the computation of \(A \)
- The space for the counters \(i, j, \) and \(c \)
- \(c, e \) and so here to count positions on the output tape, and hence will use \(\log_2 l(n) \) bits each.

We get that \(S'(n) = S(n) + O(\log_2 l(n)) \)
Exercise 1: Consider the boolean expression

\[E = (x_3 \land \neg((x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2))) \lor (\neg x_3 \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)) \]

Construct a boolean circuit that computes the value of \(E \), given inputs for \(x_1, x_2, x_3 \).

What is the size of this circuit? 6
What is the depth? 4

How does the size compare to the length of \(E \)?
Exercise: Reduction from Reachability to Circuit Value

Reachability: given a directed graph \(G = (V, E) \) with \(V = \{1, \ldots, n\} \) and \(E \subseteq V \times V \), is there a path from node 1 to node \(n \) in \(G \)?

Circuit Value: given a boolean circuit \(C \) without input variables, is the output of \(C \) equal to \(T \)?

We show a logspace reduction of Reachability to Circuit Value, i.e., we show how to construct in logspace from a directed graph \(G \) a circuit \(R(G) \) such that:

1. \(i \) is reachable from \(n \) in \(G \) iff

 - the value of \(R(G) \) is \(T \).

Notice that the key point is to compute \(R(G) \) in logspace.

In \(R(G) \), we use gates of two forms:

1. \(g_{i,j,k} \), with \(1 \leq i, j \leq n \) and \(0 \leq k \leq n \)

 Intuitively, \(g_{i,j,k} \) is true iff

 \[
 \begin{array}{c}
 i \rightarrow 0 \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow j \\
 \forall \ell \leq k
 \end{array}

 \]

 i.e., there is a path from \(i \) to \(j \) not using any intermediate node bigger than \(k \).

2. \(h_{i,j,k} \), with \(1 \leq i, j, k \leq n \) iff

 \[
 \begin{array}{c}
 i \rightarrow 0 \rightarrow 0 \rightarrow k \rightarrow \cdots \rightarrow j \\
 \forall \ell \leq k
 \end{array}

 \]

 i.e., there is a path from \(i \) to \(j \) not using any intermediate node bigger than \(k \), but \(k \) is an intermediate node.
We describe now the gates and how they are connected.

- For $k = 0$, all g_{ij0} gates are constant gates

$$g_{ij0} = T \iff i \neq j \lor i \rightarrow j \in G_1$$

This is how G is reflected in $R(G)$ (note that there are no g_{ij0} gates)

- For $k = 1, 2, \ldots, n$
 - g_{ijk} is an AND gate with predecessors

 $g_{i,k, k-1}$ and $g_{k,j, k-1}$

 - g_{ijk} is an OR gate with predecessors

 $g_{ijk}, k-1$ and high

The output gate is $g_{i,n,n}$

$R(G)$ can be computed from G in logarithmic space.

Note that the circuit $R(G)$ is legitimate, since it contains no cycles: we can reverse the gates $1, 2, \ldots, 2n^3 + n^2$ in non-decreasing order of the third index, and with high preceding g_{ijk}

We have to show that the value of the output gate of $R(G)$ is T iff there is a path from i to n in G.

We prove by induction on k that the values of the gates correspond to the informal meaning we gave them:

- For $k = 0$: this holds.
- If it is true up to $k-1$, the definitions of g_{ijk} and high guarantee that it is true also for k.

(\text{proof details omitted})
Exercise: A boolean function \(f \) is said to be monotone if it has the following property: if one of the values changes from 0 to 1, then the value of \(f \) does not change from 1 to 0.

We show that \(f \) is monotone iff it can be expressed by a circuit with only AND and OR gates.

\[\leq \]

Consider a circuit \(C \) with only AND and OR gates expressing \(f \).

We show by induction on the depth of a node \(N \):

- If the value of an input \(x \) changes from 0 to 1, then the value of \(N \) does not change from 1 to 0.

Base: depth \((N) = 0\), then \(N \) is either an input or a constant node.

- if it is a constant, its value does not change
- if it is an input different from \(x \),
- if it is input \(x \), its value changes from 0 to 1 (and not from 1 to 0)

Induction: suppose that for all nodes of level \(k \), the value does not change from 1 to 0.

Consider a node \(N \) at level \(k+1 \). We show that the value of \(N \) does not change from 1 to 0.

Case 1: \(N \) is an AND node

\[y_1 \land y_2 \]

\[y_{\text{AND}} \]

Case 2: \(N \) is an OR node

\[y_1 \lor y_2 \]

\[y_{\text{OR}} \]
We need to consider various subcases, corresponding to the changes of \(y_1, y_2 \) from 0 to 1.

<table>
<thead>
<tr>
<th>(y_1)</th>
<th>(y_2)</th>
<th>(y'_1)</th>
<th>(y'_2)</th>
<th>(\text{AND})</th>
<th>(\text{OR})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

We see that both for an AND node and for an OR node, the output value never changes from 1 to 0.

"\(\Rightarrow \)" We show by induction on \(\alpha \) that every monotone boolean function \(f(x_1, \ldots, x_\alpha) \) of \(\alpha \) variables can be represented by a circuit with AND and OR gates only.

Base case: 0 arguments. \(f \) is constant, and hence monotone.

Inductive case: Assume the claim holds for \(\alpha \).

We show it holds for a function \(f(x_1, \ldots, x_{\alpha+1}) \).

We exploit the fact that

\[
f(x_1, \ldots, x_\alpha, x_{\alpha+1}) = (x_{\alpha+1} \land f(x_1, \ldots, x_\alpha, 1)) \lor (\overline{x_{\alpha+1}} \land f(x_1, \ldots, x_\alpha, 0))
\]
Hence, we can construct a circuit C_f computing $f(x_1, \ldots, x_n, x_{n+1})$ as follows:

![Diagram of the circuit C_f]

Observe that, since $f(x_1, \ldots, x_{n+1})$ is monotone, we have that also $f(x_1, \ldots, x_n, 0)$ and $f(x_1, \ldots, x_n, 1)$ are monotone.

Hence, since $f(x_1, \ldots, x_n, 0)$ and $f(x_1, \ldots, x_n, 1)$ are n-variable monotone functions, by inductive hypothesis, they can be represented by circuits with $A\&D$ and $O\&R$ gates only.

Hence, it suffices to show that we can get rid of the only remaining $N\&O$ gate.

Consider the following circuit C'_f in which we have eliminated the $N\&O$ gate.
Let us consider the possible values of f in C_f and C'_f. It depends on the values of k_m, v_0, v_1.

<table>
<thead>
<tr>
<th>k_m</th>
<th>v_0</th>
<th>v_1</th>
<th>C_f</th>
<th>C'_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that $C_f = C'_f$, except for case (7).

However, since $f(k_1, \ldots, k_{n+1})$ is monotone, cases (3) and (7) cannot occur, since they would mean that $f(k_1, \ldots, k_m, k_{n+1})$ changes from $v_0 = 1$ for $k_{n+1} = 0$ to $v_0 = 0$ for $k_{n+1} = 1$.

Hence, C'_f is the correct circuit consisting of AND and OR gates only and computing $f(k_1, \ldots, k_{n+1})$.