Exercise: (Section 5.3.2 from textbook)
Consider the following languages over $\Sigma = \{0, 1\}$

$L_e = \{ \mathcal{E}(M) \mid L(M) = \emptyset \}$

$L_{\text{ac}} = \{ \mathcal{E}(M) \mid L(M) \neq \emptyset \}$

Hence: L_e is the set of all strings that encode T.M.s that accept the empty language.

L_{ac} is the complement of L_e.

Claim 1: L_{ac} is R.E.

Proof: construct N.T.M. N for L_{ac}

(and then convert N to an ordinary T.M.)

N works as follows: on input $\mathcal{E}(M)$

1) Guess a string $w \in \Sigma^*$

2) Simulate M on w (like a U.T.M.)

3) Accept $\mathcal{E}(M)$ if M accepts w

We have $\mathcal{E}(M) \in L(N) \iff \exists w \text{ s.t. } \langle M, w \rangle \in L(U)$

$\iff \exists w \text{ s.t. } w \in L(M)$

$\iff \mathcal{E}(M) \in L_{\text{ac}}$
Claim 2: \(L_{\text{re}} \) is non-recursively

Proof: by reduction from \(L_{\text{m}} \) to \(L_{\text{re}} \)

Reduction \(R \) is a function computable by a halting T.M.
with input: instance \(< M, w > \) of \(L_{\text{m}} \)
output: instance \(\varepsilon(M') \) of \(L_{\text{re}} \)
eq \text{set}: \(< M, w > \in L_{\text{m}} \iff \varepsilon(M') \in L_{\text{re}} \)

Description of \(M' \):
- \(M' \) ignores completely its own input string \(X \)
- instead, it replaces its input by the string \(< M, w > \), and runs \(M \) on \(w \) (see (*) below)
- if \(M \) accepts \(w \), then \(M' \) accepts \(X \)
- if \(M \) never halts on \(w \) or rejects \(w \),
 then \(M' \) also never halts on \(w \) or rejects \(X \)

Note: if \(w \in \mathcal{L}(M) \Rightarrow \mathcal{L}(M') = \Sigma^* \\
 \text{if } w \notin \mathcal{L}(M) \Rightarrow \mathcal{L}(M') = \emptyset \\

hence \(< M, w > \in L_{\text{m}} \iff \varepsilon(M') \in L_{\text{re}} \)

We can construct a halting T.M. \(M_R \) that, given \(< M, w > \) as input, constructs \(\varepsilon(M') \) for an \(M' \) that behaves as above.

\(\text{q.e.d.} \)

(*) \(M' \) has the following form: (let \(w = a_1, \ldots, a_n \))

\[M \]

To sum up, we have that \(L_{\text{re}} \) is RE but non-recursive.
Hence \(L_{\text{re}} \) must be non-RE.
Exercise 3.2.1

The halting problem, \(L_{H_{1}} \), is the set \(\langle M, w \rangle \) s.t.
\(M \) halts on \(w \) (with or without accepting) in R.E.
but not recursive.

To show R.E., we construct a T.M. \(H \) s.t.
\[L(H) = L_{H} = \{ \langle M, w \rangle \mid M \text{ halts on } w \} \]

\[\langle M, w \rangle \rightarrow \text{yes} \]
\[H \]
\[\text{halts and says no} \]

To show that \(L_{H} \) is not recursive, we assume by contradiction
\(\text{it is R.E.} \), and derive that \(L_{M} \) is recursive.

By contradiction, let \(H \) be an algorithm for \(L_{H} \), and
\(U \) a procedure for \(L_{M} \)

\[\langle M, w \rangle \rightarrow \text{yes} \rightarrow \text{yes} \]
\[U \]
\[\text{triggers} \]
\[\rightarrow \text{no} \rightarrow \text{no} \]
\[A_{m} \]

\(A_{m} \) would be an algorithm for \(L_{M} \).

\text{Contradiction}
Let \(L \) be R.E. and \(\bar{L} \) be non-R.E.

Consider \(L' = \{0w \mid w \in L\} \cup \{1w \mid w \notin L\} \).

What do we know about \(L' \) and \(\bar{L}' \)?

We show that \(L' \) is non-R.E.

Suppose by contradiction that we have a procedure \(M_L \) for \(L' \).

Then we can construct a procedure \(M_{\bar{L}} \) for \(\bar{L} \) as follows:

- on input \(w \), \(M_{\bar{L}} \) changes the input to \(1w \) and simulates \(M_L \).

- if \(M_L \) accepts \(1w \), then \(w \notin L \), and \(M_{\bar{L}} \) accepts.
- if \(M_L \) does not terminate or terminates and answers no, then \(w \notin L \), and \(M_{\bar{L}} \) does not terminate or terminates and answers no.

\[\Rightarrow M_{\bar{L}} \] would accept exactly \(\bar{L} \). Contradiction.

\[\bar{L}' = \{0w \mid w \in L\} \cup \{1w \mid w \in L\} \cup \{\varepsilon\} \]

Reversing as for \(L' \), we get that \(\bar{L}' \) is non-R.E.
Fl, the complement of the halting problem, i.e., the set of pairs \(\langle M, w \rangle \) such that \(M \) on input \(w \) does not halt, is non-R.E.

Proof: By reduction from \(E_n \), which is non-R.E.

Idea: we show how to convert any TM \(M \) into another TM \(M_h \) s.t. \(M_h \) halts on \(w \) iff \(M \) accepts \(w \).

Construction:

1) Ensure that \(M_h \) does not halt unless \(M \) accepts.
 - Add to the states of \(M \) a new loop state \(q \), with \(\delta(q, x) = (q, x, r) \) for all \(x \in \Gamma \).
 - For each \(\delta(q', y) \) that is undefined and \(q' \in F \), add \(\delta(q', y) = (q', y, r) \).

2) Ensure that, if \(M \) accepts, then \(M_h \) halts.
 - Make \(\delta(q, x) \) undefined for all \(q \in F \) and \(x \in \Gamma \).

3) The other moves of \(M_h \) are as those of \(M \).

\(\text{q.e.d.} \)