DECISION PROBLEMS FOR REGULAR LANGUAGES

Exercise 1:

Give algorithms to tell whether

a) a given regular language L is universal.
 (i.e. $L = \Sigma^*$).

b) two regular languages have at least one string in common.

STATE MINIMIZATION

Exercise 2

Minimize the following DFA.

![DFA Diagram](image)

Exercise 3

Minimize the following DFA.

![DFA Diagram](image)
SOLUTIONS

1) a) If \(L = \Sigma^* \), then \(\overline{L} = \Sigma^* = \emptyset \)

Hence, we need to check whether \(\overline{L} \) is empty.

Algorithm when \(L \) is given as a DFA \(D_L \):

1) Construct a DFA \(D_{\overline{L}} \) s.t. \(L(D_{\overline{L}}) = \overline{L} \) by swapping final and non-final states of \(D_L \).

2) Check whether \(D_{\overline{L}} \) is empty (by constructing the set of states reachable from the initial state, and checking whether it contains at least one final state).

Algorithm when \(L \) is given as an NFA \(N_L \):

1) Determinize \(N_L \), i.e., construct a DFA \(D_L \) s.t. \(L(D_L) = L(N_L) \) (Note: \(D_L \) might have a number of states that is exponential in the number of states of \(N_L \)).

2) Proceed as in the case of a DFA.

Algorithm when \(L \) is given as a RE \(E_L \):

1) Construct an \(\varepsilon \)-NFA \(N_{\varepsilon_L} \) s.t. \(L(N_{\varepsilon_L}) = L(E_L) \)

2) Eliminate \(\varepsilon \)-transitions from \(N_{\varepsilon_L} \), obtaining an NFA \(N_L \) s.t. \(L(N_L) = L(N_{\varepsilon_L}) \)

3) Proceed as in the case of an NFA.
1) b) To check whether two REs L_1 and L_2 have at least one string in common, we can check whether $L_1 \cap L_2$ is nonempty.

Algorithm:

1) Construct a DFA/NFA/ε-NFA/RE for $L_1 \cap L_2$, starting from DFA/NFA/ε-NFA/REs for L_1 and for L_2.

2) Check whether $L_1 \cap L_2$ is not-empty.

Note: to construct a DFA/NFA/ε-NFA/RE for $L_1 \cap L_2$, we can use De Morgan’s law.

- $L_1 \cap L_2$ is still a RE, since REs are closed under intersection.
2) we start with the set of all states, and in step 0
the set will be separated into two sets of final and non-final
states. (we will use 0,1,...,8 instead of 00,91,...,98).

\[
\{0,1,2,3,4,5,6,7,8\}
\]

step 0: \[
\{0,1,2,3,4,5,8\} \quad \{6,7\}
\]

step 1: \[
\{0,1,2,5,8\} \quad \{3,4\} \quad \{6\} \quad \{7\}
\]

step 2: \[
\{2,5,8\} \quad \{0,1\} \quad \{3,4\} \quad \{6\} \quad \{7\}
\]

step 3: \[
\{2,5,8\} \quad \{0\} \quad \{1\} \quad \{3\} \quad \{4\} \quad \{6\} \quad \{7\}
\]

step 4: \[
\{2,5,8\} \quad \{0\} \quad \{1\} \quad \{3\} \quad \{4\} \quad \{6\} \quad \{7\} \quad \text{<no change>}
\]

\[\{2\} = \{2,5,8\}\]

Since the state \{4\} is not
reachable from the initial
state, it should be eliminated
from the minimized automaton.
Exercise 3) Same as previous exercise we will have:

\[
\{0,1,2,3,4\}
\]

Step 0:

\[
\{4\} \quad \{0,1,2,3\}
\]

Step 1:

\[
\{4\} \quad \{3\} \quad \{0,1,2\}
\]

Step 2:

\[
\{4\} \quad \{3\} \quad \{0,1\} \quad \{2\}
\]

Step 3:

\[
\{4\} \quad \{3\} \quad \{0,1\} \quad \{2\}
\]

\[
[0] = \{0,1\}
\]

\[
\text{a, c}
\]

\[
[0]
\]

\[
\text{a, c}
\]

\[
[1]
\]

\[
\text{b}
\]

\[
[2]
\]

\[
\text{a, b, c}
\]

\[
[3]
\]

\[
\text{a, b, c}
\]

\[
[4]
\]

\[
\text{a, b, c}
\]

Attention: Although none of final states are reachable from the state [4], it shouldn't be eliminated because we are looking for a DFA, and by eliminating [4], the automation will not be a DFA anymore!

All the states are reachable from the initial state, so we don't need to eliminate any state and the DFA is minimum.