REGULAR EXPRESSIONS & LANGUAGES

EXERCISE 1

Write regular expressions for the following languages:

a) The set of all strings consisting of zero or more a's, followed by zero or more b's, followed by zero or more c's;

b) The set of all strings that consist of either 01 repeated one or more times or 010 repeated one or more times;

c) The set of strings that either begin or end (or both) with 01;

d) The set of strings over {x,y,z} such that the number of y's is divisible by three;

e) The set of strings over {0,1} such that at least one of the last ten positions is a 1;

f) The set of strings over {0,1,...,9} such that the final digit has appeared before;

g) The set of strings over {0,1,...,9} such that the final digit has not appeared before.

EXERCISE 2

Give English descriptions of the languages over the alphabet \{a,b,c\} defined by the following regular expressions:

a) \((a+b)(a+b)(a+b)\)
b) \((\varepsilon+a)b(\varepsilon+c)\)
c) \((cb)^* + b(cb)^* + (cb)^*c + b(cb)^*c\)

EXERCISE 3

a) Show that for every regular language \(L\) we have \((L^*)^* = L^*\).

b) Show that for all regular languages \(L\) and \(M\) we have \((L^*M^*)^* = (L \cup M)^*\). [Note: \((L \cup M)^* = \mathcal{L}(L(M))\)]
SOLUTIONS (20/11/2008)

1) a) $a^* b^* c^*$

1) b) $(01)(01)^* + (010)(010)^*$ or $(01)^* + (010)^*$

1) c) $(01)(0+1)^* + (0+1)^*(01)$

Note: we assume that the strings are over $\{0,1\}$.

1) d) $((x+r)^* y (x+r)^* y (x+r)^* y (x+r)^*)^*$

1) e) Let $E_i = \underbrace{(0+1)^* \cdots (0+1)}_{i \text{ times}} \underbrace{(0+1)^* \cdots (0+1)}_{(8-i) \text{ times}}$, $i \in \{0, 1, \ldots, 8\}$.

Then $E = (0+1)^* (E_0 + E_1 + \cdots + E_8)$.

1) f) Let $E_d = 0+1+\cdots+9$. Then $E = E_d^* E_d^* 0 + E_d^* 1 E_d^* 1 + \cdots + E_d^* 9 E_d^* 9$.

1) g) Let $E_0 = 1+2+\cdots+9$, $E_i = 0+\cdots+(i-1)+(i+1)+\cdots+9$ $(1 \leq i \leq 8)$, $E_9 = 0+1+\cdots+8$, and $E_d = 0+1+\cdots+9$.

Then $E = E_d + E_d^* 0 + E_d^* 1 + \cdots + E_d^* 9$.

(Also: $E = E_0^* 0 + E_1^* 1 + \cdots + E_9^* 9$.)

2) a) The set of all strings of length three that do not contain the symbol c: \{aaa, aab, aba, abb, ba, bab, bba, bbb\}.

2) b) The set of all strings with exactly one b, eventually preceded by an a and/or followed by a c: \{b, ab, bc, abc\}.

2) c) The set of all strings consisting of alternating b's and c's. Alternative regular expressions for the language are:

- $(E+c)(bc)^*(E+b)$
- $(bc)^* + (cb)^* + c(bc)^* + b(cb)^*$
3) a) We have to show that $L^* \subseteq (L^*)^*$ and $(L^*)^* \subseteq L^*$.

$\text{(L^*)^* \subseteq (L^*)^*}$

Trivial since $(L^*)^* = \{ \varepsilon \} \cup L^* \cup L^* \cup \ldots$

$\text{(L^*)^* \subseteq L^*}$

Given $w \in (L^*)^*$ we have to show that $w \in L^*$

If $w \in (L^*)^*$ then there exists $n \in \mathbb{N}$ such that $w = w_1 \ldots w_n$ where $w_i \in L^*$ ($1 \leq i \leq n$). Since, for all $i \in \{ 1, 2, \ldots, n \}$, there exists $m_i \in \mathbb{N}$ such that $w_i = w_{i1} \ldots w_{im_i}$ where $w_{ij} \in L$ ($1 \leq j \leq m_i$) we have that $w = (w_{i1} \ldots w_{im_1}) \ldots (w_{i1} \ldots w_{im_n})$.

Thus $w \in L^*$.

3) b) We have to show that $(L^* \cup M)^* \subseteq (L \cup M)^*$ and $(L \cup M)^* \subseteq (L^* \cup M)^*$.

$\text{(L^* \cup M)^* \subseteq (L \cup M)^*}$

Given $w \in (L^* \cup M)^*$ we have to show that $w \in (L \cup M)^*$.

If $w \in (L^* \cup M)^*$ then $w = w_1 \ldots w_n$ where $w_i \in L^* \cup M^*$.

Since, for all $i \in \{ 1, \ldots, n \}$, $w_i = u_{i1} \ldots u_{im_i}$, $v_{i1} \ldots v_{i\ell_i}$ where $u_{ij} \in L$ and $v_{ij} \in M$ we have that:

$$w = (u_{i1} \ldots u_{im_1}) \ldots (u_{i1} \ldots u_{im_n}) \ldots (v_{i1} \ldots v_{i\ell_1}) \ldots (v_{i1} \ldots v_{i\ell_n})$$

Thus $w \in (L \cup M)^*$.

$\text{(L \cup M)^* \subseteq (L^* \cup M)^*}$

Given $w \in (L \cup M)^*$ we have to show that $w \in (L^* \cup M)^*$.

If $w \in (L \cup M)^*$ then $w = w_1 \ldots w_n$ where each w_i is in either L or M. If w_i is in L then w_i is also in L^* and, since ε is in M^*, $w_i = w_{i1} \ldots w_{im_i}$ is in $L^* M^*$.

Similarly, if w_i is in M then w_i is in $L^* M^*$.

Thus $w \in (L^* \cup M)^*$.