Decidability and Undecidability

Classification of languages/problems

1) Recursive languages: class of languages accepted by T.M. that always halt

T.M. that always halts = algorithm = effective procedure
(belts on all inputs in finite time, either accepting or rejecting)

\iff decidable problems/languages

problems/languages that are not recursive are called undecidable
\Rightarrow they don't have algorithms

Note: regular and context-free languages are special cases of recursive languages

2) Recursively enumerable (R.E.) languages:

class of languages defined by T.M. (or procedures)

arbitrary T.M. (that may not halt) = procedure

3) non-R.E. languages

languages/problems for which there is no T.M./procedure

Pictorially

1) algorithm (recursive)

input w \rightarrow A \rightarrow yes (w \in L)

2) procedure (R.E.)

input w \rightarrow P \rightarrow yes (w \in L)

3) non-R.E.

input w \rightarrow ??
The Church–Turing Thesis

We have provided a classification of languages according to TM-acceptance/termination.

However, we are interested in problems and their computability.

Decision problem: is a set of related questions with a yes/no answer.

E.g., the decision problem of determining whether a natural number is prime is the set of questions:

\[p_0 : \text{is 0 prime?} \]
\[p_1 : \text{is 1 prime?} \]
\[p_2 : \text{is 2 prime?} \]

Each question is an instance of the problem. Positive instances:
A solution to a decision problem \(P \) is an algorithm that determines the correct answer to each question \(p_i \in P \).

\(P \) is decidable if it has a solution.

What is an algorithm (or effective procedure)?

It is difficult to define, but we can list some fundamental properties:

- Complete: produces correct answer for each instance.
- Mechanistic: consists of a finite sequence of instructions, each of which can be carried out unambiguously.
- Deterministic: performs the same computation if executed multiple times on the same input.

TM machine computations are mechanistic and deterministic. If the TM halts on all inputs, then it is an algorithm.
Representation of decision problems:

To provide a TM solution to a decision problem, we need to encode its instances in terms of strings:

\[
\text{problem \ representation} \rightarrow \text{TM input} \rightarrow \text{TM computation} \rightarrow \text{yes/no answer}
\]

\[p_i \rightarrow w_i \rightarrow \text{yes/no} \]

Note: The choice of the representation may affect the solution. However, it will not affect existence of a TM that is an effective procedure.

Would it make a difference, if we choose a different computation model than the TM?

Several such models have been proposed, based on different paradigms:

- String transformations:
 - Post systems [Emil Post, 1936]
 - Semi-Turing systems [Emil Post, 1944]
 - Markov Systems [Markov, 1961]
 - Unrestricted grammars [Noam Chomsky, 1956]

- Function evaluation:
 - Partial recursive and μ-recursive functions
 [Gödel 1931, Kleene 1936]
 - Lambda calculus [Church 1941]

- Abstract computing machines:
 - Turing Machines
 - Register machines [Stephen 1961]
 - Multiple-stack machines
It has been shown that all of the above algorithmic systems have the same computing power, i.e., they can simulate each other.

It is currently believed that the computing power of any of these systems defines the intrinsic limits of computation.

This belief is known as Church-Turing Thesis.

Church-Turing Thesis for decision problems:

There is an effective procedure to solve a decision problem iff there is a TM that always halts and solves the problem.

A partial solution to a decision problem P is not necessarily complete but otherwise effective procedure that returns yes for every positive instance $p \in P$.

If p is a negative instance, the procedure may return no or not terminate.

Church-Turing Thesis for recognition problems:

A decision problem is partially solvable iff there is a TM that accepts the positive instances of the problem.

The most general formulation is in terms of TMs that compute functions (by leaving the result on the tape).

Church-Turing Thesis for computable functions:

A function f is effectively computable iff there is a TM that computes f.
Note: The Church–Turing thesis cannot be proved, since it relies on the intuitive notion of effective procedure.

It could be disproved, by exhibiting an effective procedure not computable by a TM. This is unlikely, given the robustness of the TM model.

We exploit the Church–Turing thesis to simplify proofs of existence of a decision algorithm:

instead of constructing the TM we describe an intuitively effective procedure to solve the problem.
Classes of languages:

- Regular
- Context-Free Languages (CFL)
- Recursive
- Recursively Enumerable (R.E.)
- Non-Recursive (non-R.E.)

Closure properties

Theorem: \(L \) is recursive \(\Rightarrow \overline{L} \) is recursive

Proof: Given algorithm \(A \) for \(L \), construct alg. \(\overline{A} \) for \(\overline{L} \)

Intuitively:

- Input \(w \)
- \(A \):
 - Yes
 - No
- \(\overline{A} \):
 - Yes
 - No

More precisely:

\[A = (Q, \Sigma, \Gamma, \delta, q_0, \emptyset, F) \]
\[\overline{A} = (Q \cup \{f\}, \Sigma, \Gamma, \overline{\delta}, q_0, \emptyset, \{f\}) \]

Yes \(\rightarrow \) No: We assume that final states of \(F \) are blocking.
So we get that \(\overline{A} \) blocks in a non-final state.

No \(\rightarrow \) Yes: If \(\delta(q, x) \) is undefined, then set \(\overline{\delta}(q, x) = (\overline{f}, x, R) \)

Since \(L \) is recursive, \(\overline{A} \) always halts (with output yes or no).

Hence \(\overline{A} \) also halts always (with output no or yes).

\(\square \)
Theorem: Both \(L \) and \(\overline{L} \) are R.E.

\[\Rightarrow \text{both } L \text{ and } \overline{L} \text{ are recursive} \]

Proof: Let \(P, \overline{P} \) be procedures (i.e. TMs) for \(L, \overline{L} \).

We run them in parallel, to get an alg. \(A \) for \(L \).

Intuitively:

\[
\text{Input } w \quad \xrightarrow{P} \quad \text{yes} \quad \text{yes} \\
\text{Input } w \quad \xrightarrow{\overline{P}} \quad \text{yes} \quad \text{no}
\]

What does this mean (from a formal point of view)?

Note: we assume that \(\overline{P} \) is non-blocking or non-final states.

Note: for every \(w \), one of \(P, \overline{P} \) will halt and give the right answer.

More precisely:

For \(A \) use 2 tapes, one simulating that of \(P \)

\[
\text{States of } A: \text{ for each state } p \text{ of } P \quad \text{state } q \text{ of } \overline{P} \}
\]

\[
\text{State } \langle p, q \rangle \quad \text{of } A
\]

Transitions:

\[
\text{for each pair } \{ \delta(p, x) = (p', x', d_1) \text{ in } P \} \text{ of transitions: } \delta(q, y) = (q', y', d_2) \text{ in } \overline{P}
\]

we have a transition in \(A \)

\[
\delta(\langle p, q \rangle, x, y) = (\langle p', q' \rangle, (x', d_1, y', d_2))
\]

And states: every \(\langle p, q \rangle \) s.t. \(p \) is final in \(P \)

Note: if \(P \) accepts in \(q \), then \(q \) is final (and we assume it is halting). Hence, if \(A \) needs \(\langle p, q \rangle \), \(p \) cannot be final, and since \(q \) is halting, \(A \) rejects.

q.e.d.
The two previous results imply that, for any language \(L \), we have that:

- either both \(L \) and \(\overline{L} \) are recursive
- or at least one of \(L, \overline{L} \) is non-R.E.

<table>
<thead>
<tr>
<th>(L) rec.</th>
<th>(L) R.E. but not rec.</th>
<th>(L) non-R.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\checkmark)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>

(\(\times \) means that this case is not possible)

Theorem: \(L_1, L_2 \) rec. \(\Rightarrow \) \(L_1 \cup L_2 \) rec.

(recursive languages are closed under union)

Proof: let \(A_1, A_2 \) be algorithms for \(L_1, L_2 \)

\[A_{L_1 \cup L_2} \]

Output "no" of \(A_1 \) triggers \(A_2 \) means:
- if \(A_1 \) halts in a non-final state \(q \) (i.e. \(w \notin L_1 \)),
 then we have a transition from \(q \) to the initial state of \(A_2 \) (to feed \(w \) to \(A_2 \), we can store it on a second tape before running \(A_1 \))

\(\Box \)
Theorem: \(L_1, L_2 \text{ R.E.} \Rightarrow L_1 \cup L_2 \text{ R.E.} \)

(R.E. languages are closed under union)

Proof: let \(P_1, P_2 \) be procedures (i.e. TMs) for \(L_1, L_2 \)

we run \(P_1, P_2 \) in parallel

\[\begin{array}{c}
\text{input} \ w \\
\downarrow \\
\gamma \\
\downarrow \\
P_1 \\
\gamma \\
\downarrow \\
P_2 \\
\gamma \\
\downarrow \\
P_1 \cup L_2
\end{array} \]

Note: we assume that \(P_1, P_2 \) are non-blocking on non-final states

Note: if \(w \in L_1 \cup L_2 \), one of \(P_1 \) or \(P_2 \) will halt and answer yes

\[
\boxed{\text{Exercise: work out the details}}
\]

\[
\boxed{\text{Exercise: prove dispose closure under intersection, reversal}}
\]

\underline{Showing languages to be undecidable/non-R.E.}

To show languages to be undecidable (non-R.E. we make use of the basic idea of feeding the encoding of a T.M. as input to a T.M.

\[\text{e.g. Universal T.M. (UTM):} \]

- input: T.M. \(M \)
 - \(M \)'s input string \(w \) \(\langle M, w \rangle \)
- output: UTM accepts \(\langle M, w \rangle \) \(\Leftrightarrow M \) accepts \(w \)

- Diagonalization: consider what happens when certain T.M.s are fed their own encoding as input.
In both cases we need a suitable way of encoding T.M.'s by means of strings.

We consider encoding T.M.'s by means of strings over \{0, 1\}, i.e., as binary integers.

Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, F) \) be a T.M.

We assume \(\Sigma = \{0, 1\} \), i.e., we consider only T.M.'s with \(\Gamma = \{0, 1, \#\} \) over the binary alphabet (this is no limitation).

\(Q = \{q_1, q_2, \ldots, q_n\} \)
- initial state \(q_1 \)
- single final state \(q_2 \)

We use the following notation:
- \(k_0 = 0 \), \(k_1 = 1 \), \(k_2 = \# \)
- \(d_0 = \text{left} \), \(d_1 = \text{right} \), \(d_2 = \text{stay} \)

Encoding of transitions:
\[\delta(q_i, k_j) = (q_k, k_l, d_m) \]

with \(i, k, l \in \{0, \ldots, n\} \), \(j, l \in \{0, 1, 2\} \), \(m \in \{0, 2, 3\} \)

We encode the transition as \(0^i 1 0^j 1 0^k 1 0^l 0^m \)

Encoding \(E(M) \) of entire T.M. \(M \):

Let \(c_1, \ldots, c_m \) be the encodings of the transitions of \(M \).

We encode \(M \) as:

\[E(M) = c_1 11 c_2 11 c_3 11 \ldots c_m 11 \]

Encoding of \(M \) with its input \(w \): \(E(M) \ 111 \ w = \langle M, w \rangle \)

(note: the first 111 indicate that the encoding \(E(M) \) is finished)
Note:
- each bit string encodes a unique T.M.;
- either it is a valid encoding and encodes a unique T.M.
- or it is not a valid encoding according to our rules;
 in this case we assume that it encodes the particular
 machine M_0 with 1 state and no transitions
 ($\mathcal{L}(M_0) = \emptyset$)
- each T.M. admits at least 1 encoding (possibly many)

Enumerating binary strings:

We define an ordering on binary strings:
- in increasing order of length
- strings of the same length are ordered lexicographically

$\Rightarrow E, 0, 1, 00, 01, 10, 11, 000, 001, \ldots$

Let w_i be the i-th string in this ordering
(starting with $w_1 = E$)

We define M_i as the T.M. encoded by w_i, i.e. $w_i = E(M_i)$

\Rightarrow we get an ordering of T.M.'s:
- each T.M. appears at least once in the ordering
- --- may appear many times

Note: each binary string w_i can be viewed:
- as a string fed as input to a T.M
- as the encoding $w_i = E(M_i)$ of a T.M. M_i
The diagonalization language

Exploiting the ordering enumeration of \(w_i / M_i \), we can consider the infinite table \(T \) s.t. \(\forall i, j \geq 1: \)

\[
T(i, j) = \begin{cases}
1 & \text{if } w_j \in L(M_i) \\
0 & \text{if } w_j \notin L(M_i)
\end{cases}
\]

\[
\begin{array}{cccc}
w_1 & w_2 & w_3 & w_4 & \ldots \\
M_1 & 0 & 1 & 1 & 0 \\
M_2 & 1 & 1 & 0 & 1 \\
M_3 & 0 & 0 & 1 & 1 \\
M_4 & 1 & 0 & 1 & 0 \\
\vdots & & & & \end{array}
\]

Each row of \(T \) is a characteristic vector of \(L(M_i) \), specifying which strings belong to \(L(M_i) \).

Definition: The diagonalization language

\[
L_d = \{ w_i \mid T(i, i) = 0 \} = \{ w_i \mid w_i \notin L(M_i) \}
\]

In other words: \(L_d \) is defined as the language whose characteristic vector is the bit by bit complementation of the diagonal of \(T \).

Theorem: \(L_d \) is non-R.E.

Proof: By contradiction, assume \(L_d \) is R.E. and has a T.M. that accepts it.

Then \(\exists k \geq 1 \) s.t. \(L(M_k) = L_d \)
Question: is $w_k \in L_d$?

Case 1: $w_k \in L_d \Rightarrow w_k \in L(M_k)$

$\Rightarrow T(k, k) = 1$

$\Rightarrow w_k \notin L_d$ contradiction

Case 2: $w_k \notin L_d \Rightarrow w_k \notin L(M_k)$

$\Rightarrow T(k, k) = 0$

$\Rightarrow w_k \in L_d$ contradiction

Intuition: L_d is defined so that it disagrees with each $L(M_k)$ on at least one string w_k.

\Rightarrow no M_k can have L_d as its language.

But all T.M.'s appear in the enumeration.

\Rightarrow no T.M. can accept L_d.

Universal T.M.

UTM: Input $\langle M, w \rangle$ with $E(M)$ encoding of a T.M. M

i.e. $E(M)111w$ - w input string for M

Action: UTM simulates M on w, and accepts if and only if M accepts w.

Language L_u of UTM

Definition: Universal language

$L_u = \{ \langle M, w \rangle \mid w \in L(M) \}$

Note: we use $\langle M, w \rangle$ to denote $E(M)111w$,

where $E(M)$ denotes the encoding of T.M. M, as introduced previously.
Theorem: \(L_n \in \text{R.E.} \)

Proof: we construct a T.M. \(U \) such that \(L(U) = L_n \)

\(U \) has 4 tapes:

1. **tape 1**: input tape containing \(<M, w>\) (read-only)
2. **tape 2**: simulates the tape of \(M \)
3. **tape 3**: contains the current state \(q_1 \) of \(M \) and \(00\ldots0 \)

 (note: the state of \(M \) cannot be encoded in the state of \(U \), since we have no bound on the number of states that \(M \) could have)

4. **tape 4**: scratch tape

Transitions: \(U \) simulates the transitions on tape 1, by modifying tapes 2 and 3

- Initially, copy \(w \) to tape 2, and \(q_1 = 0 \) to tape 3

- To simulate each transition of \(M \), \(U \) uses:
 - The current state \(q_i = 0^k \) on tape 3
 - The current symbol \(X_j \) on tape 2

- Looks on tape 1 for transition of \(i \rightarrow 10^i \rightarrow 10^i \rightarrow 10^i \)

 i.e. \(\delta(q_i, X_j) = (q_i, X_i, d_m) \)

- Changes the content of tape 3 to \(q_i = 0^k \)
- Changes the current symbol on tape 2 to \(X_i \)
- Moves the head on tape 2 according to \(d_m \)

\(U \) accepts whenever \(M \) enters final state \(q_2 \).
To show that L_1 is not recursive, we exploit the notion of reduction:

Reduction

Definition: L_1 reduces to L_2 (denoted $L_1 < L_2$) if there exist a function R (called the reduction from L_1 to L_2) such that:

1) R is computed by some T.M. M_R that takes as input a string w (an instance of L_1) and halts by leaving a string $R(w)$ on its tape (M_R is an algorithm!)

2) $w \in L_1 \iff R(w) \in L_2$

Intuitively:

\[\Sigma^* \quad \xrightarrow{R} \quad \Sigma^* \]

R maps all strings in L_1 to a subset of all strings in L_2

Theorem: $L_1 < L_2$ and L_2 is recursive \Rightarrow L_1 is recursive

Proof: given algorithm A_2 for L_2

construct algorithm A_1 for L_1:

\[A_1 \xrightarrow{w} M_R \xrightarrow{R(w)} A_2 \]

A_1 is correct since

$w \in L_1 \iff R(w) \in L_2 \iff A_2 \text{ accepts } R(w) \iff A_1 \text{ accepts } w$

q.e.d.
We can use the same result to show a language to be non-recursive (i.e., undecidable):

Corollary: \(L_1 < L_2 \) and \(L_1\) is non-recursive \(\Rightarrow \) \(L_2\) is non-recursive

The above results apply also to R.E.

Theorem: \(L_1 < L_2\) and \(L_2\) is R.E. \(\Rightarrow \) \(L_1\) is R.E.

\(L_1 < L_2\) and \(L_1\) is non-R.E. \(\Rightarrow \) \(L_2\) is non-R.E.

Intuitively, \(L_1 < L_2\) means that \(L_2\) is at least as difficult as \(L_1\).

Theorem: \(L_0\) is non-recursive

We show that \(\overline{L_0} < L_1\), (i.e., \(\overline{L_0}\) reduces to \(L_1\)).

The claim follows, since \(\overline{L_0}\) is non-recursive

(If \(\overline{L_0}\) were recursive, also \(\overline{L_0} = L_0\) would be recursive, but we know that \(L_0\) is non-R.E.)

Reduction \(R\): given input string \(w\) for \(\overline{L_0}\),
produce input string \(<M, w>\) = \(C(M)\) 111 \(w\) for \(L_1\).

We define \(R(w) = w \text{ 111 111}\).

Clearly, there exists an algorithm \(M_R\) to convert \(w\) into \(w \text{ 111 111}\).

We need to show: \(w \in \overline{L_0} \iff R(w) \in L_1\)

\(w_1 \in \overline{L_0} \iff w_1 \in S(M_0) \iff <M_0, w> \in L_1\)

\(\iff C(M_0) 111 w_1 \in L_1 \iff w_1 \text{ 111 111} \in L_1 \iff R(w_1) \in L_1\) q.e.d.
To sum up:

- \(L_d \) is non-R.E. - direct proof via diagonalization.
- \(L_d \) is R.E., but non-recursive: exercise.
- \(L_n \) is R.E., but non-recursive: R.E. by construction of \(C \)
- \(\neg L_n \) is recursive, \(\neg L_n \) is non-recursive by \(L_d \) \(\subseteq \neg L_n \)
- \(L_n \) is non-R.E.: by inference from previous line.

We can exploit this to show a language \(L \) to be non-recursive.

\[
\text{if } L_d \subseteq L \text{ or } L_n \subseteq L \implies L \text{ is non-recursive}
\]
\[
\text{if } L_d \subseteq L \text{ or } \neg L_n \subseteq L \implies L \text{ is non-R.E.}
\]

(…and hence non-recursive)

Consider the following languages over \(\Sigma = \{0, 1\} \):
- \(L_e = \{ \Sigma(M) \mid L(M) = \emptyset \} \)
- \(L_{\neg e} = \{ \Sigma(M) \mid L(M) \neq \emptyset \} \)

Hence: \(L_e \) ... set of all strings that encode T.M.s that accept the empty language.
- \(L_{\neg e} \) ... complement of \(L_e \)

We have that: \(L_{\neg e} \) is R.E. but non-recursive.
- \(L_e \) is non-R.E.

Proof: see Exercise 5. (16, 17, etc.)
We have shown that a specific property of T.M.
languages (namely non-emptiness) is undecidable.

This is just a special case of a much more general result:
All non-trivial properties of R.E. languages are undecidable.

Property P of R.E. languages is a set of R.E. languages
E.g. the property of being context-free in the set of all CFL's.
the empty set is the set \{∅\} consisting of
only ∅

A property is trivial if either all or no R.E. language has it.
⇒ P is non-trivial if at least one R.E. language has P
and does not have P

Note: a T.M. cannot recognize a property (i.e. a set of languages) by
taking as an input string a language, because a language is
digitally infinite.

⇒ we consider instead a property P as the language of
the codes of those T.M.'s that accept a language that satisfies P

\[L_P = \{ \langle M \rangle \mid L(M) \text{ has property } P \} \]

Rice's Theorem: every non-trivial property of R.E. languages
is undecidable.

Proof: let P be a non-trivial property of R.E. languages
assume ∅ does not have P (otherwise, we can work
with \(\overline{P} \))
Since P is non-trivial, there is some $L_0 \in P$ with $L_1 \neq \emptyset$. Let M_1 be s.t. $L(M_1) = L_1 \Rightarrow \varepsilon(M_1) \in L_0$

We show that $L_0 \leq L_0$

Reduction R is an algorithm that:

- Takes as input a pair $<M_1, w>$ considered as instance of L_0
- Produces a code $\varepsilon(M_2)$ for a TM M_2

s.t.

- $<M_1, w> \in L_0 \Rightarrow \varepsilon(M_2) \in L_0$

Solve for M_2: with $\varepsilon(M_2) = R(<M_1, w>)$

We get that: $w \in L(M) \Rightarrow L(M_2) = L(M_1) \Rightarrow \varepsilon(M_2) \in L_0$

$w \notin L(M) \Rightarrow L(M_2) = \emptyset \Rightarrow \varepsilon(M_2) \notin L_0$

$\Rightarrow <M_1, w> \in L_0 \Rightarrow w \in L(M) \Rightarrow \varepsilon(M_2) \in L_0$

R reduces $L_0 \leq L_0 \Rightarrow L_0$ is undecidable Q.E.D.