Why do we need proofs in CS?

- specification \Rightarrow SW

How do we know that the SW respects the specification?

- specification \Rightarrow formal specification
- SW $\stackrel{\text{satisfies?}}{\leftrightarrow}$ testing
- proving = understanding how a complex program works

Deductive proof:

- start from a set H of hypothesis (i.e., given statements)
- show that if H is true, the conclusion C is also true
- this is done through a sequence of steps:
 - for every step a new fact follows from H and/or previously proved facts by some accepted logical principle
 - the final fact of the sequence is C

Note: the hypothesis H may be either true or false.

What we have proved when we go from H to C is:

"if H then C"

Note 2: H and C may depend on parameters that affect their truth-value

Example: "If n is even, then n^2 is even."

What does it mean that n is even?

This is an integer k s.t. $n = 2k$.
H: \(n \) is even \(\text{(note: } H \text{ has } n \text{ as parameter)} \)

by Def.: there exist \(k \in \mathbb{Z} \) s.t. \(n = 2k \)

by rules of math: \(n^2 = (2k)^2 = 2^2 \cdot k^2 = 4 \cdot k^2 \)

by integer axiom: \(2 \cdot k^2 = k \) is an integer

by Def.: \(n^2 = 2k \) is even

Other ways of stating if-then statements:

If \(H \) then \(C \)

\(H \) implies \(C \)

\(H \) only if \(C \)

\(C \) if \(H \)

whenever \(H \) holds, also \(C \) holds

If-and-only-if statements:

\(A \) if-and-only-if \(B \)

iff part: \(A \) if \(B \), i.e., if \(B \) then \(A \)

only-if part: \(A \) only-if \(B \), i.e., if \(A \) then \(B \)

To prove "\(A \) iff \(B \)" we must prove both \(\text{"If part"} \)

and the "Only-if part"

Example: \(\lfloor x \rfloor = \text{greatest integer } \leq x \)

\(\lceil x \rceil = \text{least integer } \geq x \)

Prove: let \(x \) be a real number.

Then \(\lfloor x \rfloor = \lceil x \rceil \) iff \(x \) is an integer.
Proof:

"If - part": we assume x is an integer and prove $[x] = [x]

We use the definition: if x is an integer $[x] = x$

$[x] = x

$\Rightarrow [x] = [x]

"Only if part": we assume $[x] = [x]$ and prove that x is an integer.

Definition of floor: $[x] \leq x \ (1)$

... ceiling: $\lfloor x \rfloor \geq x \ (2)$

Hypothesis: $[x] = [x] \ (3)$

Substituting $[x]$ in place of $[x]$, we get from (1)

$[x] \leq x$ and with (2) and arithmetic laws,

we get $[x] = x$

Since $[x]$ is an integer, so is x

Other forms of proofs:

"Proving equivalences of sets"

To show that the language accepted by A_1 is the same as A_2

To show $E = F$ we have to show expressions representing sets

1) $E \subseteq F$, i.e., if $x \in E$ then $x \in F$

2) $F \subseteq E$, i.e., if $x \in F$ then $x \in E$
Example: \(R \cup (S \cap T) = (R \cup S) \cap (R \cup T) \)

1) If \(x \in R \cup (S \cap T) \) then \(x \in (R \cup S) \cap (R \cup T) \)
 See HMU Figure 1.5

2) If \(x \in (R \cup S) \cap (R \cup T) \) then \(x \in R \cup (S \cap T) \)
 See HMU Figure 1.6

Contrapositive:

To prove: "if \(H \) then \(C \)
we can prove its contrapositive: "if not \(C \), then not \(H \)

We can easily see that a statement and its contrapositive are logically equivalent (i.e., either both true, or both false)

4 cases:

<table>
<thead>
<tr>
<th>(H)</th>
<th>(C)</th>
<th>if (H) then (C)</th>
<th>if not (C) then not (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Example: "if \(n \) is even, then \(n^2 \) is ...
contrapositive: "if \(n^2 \) is not even, then \(n \) is not even"

Don't confuse contrapositive, with converse.

Note: To prove an iff statement, we prove a statement and its converse.
Proof by contradiction:

To prove "if H then C"
prove that "H and not C implies falsehood"

Example: H = "U is an infinite set
S is a finite subset of U
T is the complement of S in U"

C = "T is infinite"

Proof by contradiction of "if H then C"
Assume H and not C, i.e. H and T is finite.
(A set S is finite iff there is an integer n s.t. \(|S| = n\) or the number of elements of S)

S is finite \(\Rightarrow\) there is an \(n\) s.t. \(|S| = n\)
T is finite \(\Rightarrow\) \(\cdots\)

From H we know: \(S \cup T = U\)
\(S \cap T = \emptyset\)
\(|S \cup T| = |U| = m + m\)

\(\Rightarrow U\) is finite, which is a contradiction

Proof by counterexample:

to prove something is not a theorem is often easier than to prove something is a theorem.

It is sufficient to provide a counterexample.

E.g. all odd numbers > 1 are prime.
S is not, which is a counterexample.
Proof by induction:

Basic proof technique when dealing with recursively defined objects

- integers: \[
\begin{align*}
0 & \text{ is an integer} \\
\text{if } m & \text{ is an integer, then } n+m \text{ is an integer} \\
\text{nothing else is an integer}
\end{align*}
\]

- strings: \[
\begin{align*}
\varepsilon & \text{ is a string} \\
\text{if } x & \text{ is a string and } a \in \Sigma, \text{ then } xa \text{ is a string} \\
\text{nothing else is a string}
\end{align*}
\]

- binary trees: \[
\begin{align*}
e & \text{ empty node is a BT} \\
\text{if } N & \text{ is an empty node and } T_1, T_2 \text{ are BT} \\
& \text{ then } N(T_1, T_2) \text{ is a BT} \\
& \text{nothing else is a BT}
\end{align*}
\]

Induction on integers:

We want to prove a statement \(S(m) \) about integer \(m \).

We show:

1) We show \(S(i) \), for some specific integer \(i \) (e.g., \(i = 0 \)) (base step)

2) We assume \(m \geq i \) and show \(\text{if } S(m) \text{ then } S(m+1) \) (inductive step)
We then revert to the Induction Principle.

If we prove $S(i)$ and we prove that for all $m > i$ "$S(m)$ implies $S(m+1)$" then we can conclude $S(n)$ for all $m \geq i$.

N.B. The IP cannot be proved.

Example: For all $m \geq 0 \quad \sum_{i=0}^{m} i = \frac{n(n+1)}{2} \quad (*)$

Base case: $m = 0$: \(\sum_{i=0}^{0} i = 0 \)

Inductive case: Assume $m \geq 0$

we must prove that (*) implies \(\sum_{i=m+1}^{m+n} i = \frac{(m+1)(m+n+1)}{2} \)

(*) is called the Inductive Hypothesis

\[\sum_{i=1}^{m+n} i = \sum_{i=0}^{m+n} i - (m+1) = \frac{m(m+1)}{2} + (m+1) = \]

by IH

\[= \frac{m(m+1)}{2} + \frac{2(m+1)}{2} = \frac{(m+2)(m+1)}{2} \]

Generalization of the basic induction scheme

1) We can use several base cases, i.e. we prove $S(\tilde{a})$, $S(\tilde{a}+1)$, \ldots, $S(\tilde{j})$ for some $\tilde{j} \geq \tilde{i}$.

2) In proving $S(m)$, we use all of $S(\tilde{a})$, $S(\tilde{a}+1)$, \ldots, $S(\tilde{n})$ (strong induction).