Exercise 1: Let A be an algorithm of space complexity \(s(m) \). Show that there is an algorithm \(A' \) such that:
- \(s'(m) = \mathcal{O}(s(m) + \log m) \)
- \(A' \) does not see the input tape beyond the boundaries of the input

Proof: We proceed in two steps.

1) We prove that on input \(x \), there is an algorithm \(A' \) such that:
- \(s'(m) = \mathcal{O}(s(m) + \log m) \)
- \(A' \) does not see the input tape beyond location \(2^{\mathcal{O}(s(m) + \log m)} \) from the input.

This proof is analogous to the one that we did in class to show that a poly-space bounded TM is equivalent to one that has running time \(t(m) \leq C q(m) \) with \(q(m) = \mathcal{O}(s(m)) \) (where \(s(m) \) is a polynomial space bound).

We showed \(q(m) = 2^{\log C \cdot q(m)} \). Where \(C = \left\lceil \log (1 + |U|) \right\rceil \).

In our case:
- \(q(m) = 2^{\log C \cdot q(m)} = 2^{s(m)} \)
- We have also the position on the input tape that contributes to the configuration:

 \[m \cdot 2^{\mathcal{O}(s(m))} = 2^{\log 2^{\mathcal{O}(s(m))}} = 2^{\mathcal{O}(s(m) + \log m)} \]

 Different configurations at most

Note: A TM with running time \(t(m) \leq 2^{\mathcal{O}(s(m) + \log m)} \) can see at most \(2^{\mathcal{O}(s(m) + \log m)} \) cells of the input tape.
2) We modify the algorithm A_1 in such a way that it does not move beyond the input.

The resulting algorithm A'_1 works as follows:

- whenever A_1 would move right past the end of the input, A'_1 instead:
 - does not move past the end of the input, but maintains a counter on the work tape
 - whenever A_1 moves right, the counter is incremented
 - whenever A_1 moves left, the counter is decremented

In this way, A'_1 can keep track of the position of the input head of A_1.

Whenever A_1 moves back again over the input symbol, A'_1 does not update the counter (leaving it at 0).

- A'_1 operates similarly whenever A_1 moves left past the beginning of the input.

How much space does the counter use?

Since A_1 does not scan the input tape beyond $d_1(n) = 2^0(n) = n$,

the counter takes $\log_2 d'_1(n) = O(n + \log m)$

Hence, the total space used by A'_1 is

$O(n) + O(n \cdot \log 2) = O(n + \log m)$
Exercise: Let A be an algorithm of space complexity S. Show that there is an algorithm A' such that
- A' computes the same function as A, i.e. $A'(w) = A(w)$ for $w \in \{0,1\}^*$
- A' has space complexity $S'(n) = S(n) + O(\log l(n))$
 where $l(n) = \max_{w \in \{0,1\}^n} |A(w)|$ is the size of the maximum output for input x of length n
- A' never rewrites on the same location of its output tape

Proof:
A' proceeds in successive iterations, each time simulating the whole computation of A:

in the i-th iteration, A' outputs the i-th bit of $A(x)$.

When simulating A, in its i-th iteration, A' proceeds as follows:
- it does not directly (re-)write on the output tape
- instead, it maintains on the work tape:
 - the counter i of the next output bit that will be written
 - a counter c of the bit that A is currently writing
 - the value of the bit written by A in position i
- when A would write an output bit, A' operates depending on the values of i and c:
 - if $i \neq c$, then A' does not output anything
 - if $i = c$, then A' stores the written bit on its worktape
- at the end of its simulation, A' outputs the stored bit to the i-th position of its output tape
How much space $S'(n)$ does A use on the working tape for inputs of length n?

- $S(n)$ cells, since it performs the computation of A
- The space for the counters i^* and c
- i^* and c need to count positions on the output tape, and hence will use $\log_2 l(n)$ bits each.

We get that $S'(n) = S(n) + O(\log_2 l(n))$