Exercise: Let $G = (V, E)$ be an undirected graph.

A vertex cover C of G is a subset of the vertices V such that every edge of G touches at least one of the vertices of C.

The vertex cover problem:

Input: - graph $G = (V, E)$
- integer k

Output: yes iff G has a vertex cover of size $\leq k$

Vertex cover is NP-complete:

Proof:

in NP: easy

- guess a subset C of V of size $\leq k$
- check in poly-time that it is a vertex cover

NP-hard by reduction from 3-SAT

We define a poly-time reduction R that:

- takes as input a 3-CNF formula F
- constructs a graph $G = (V, E)$ and an integer k
- such that:

F is satisfiable $\iff G$ admits a vertex cover with k nodes

Let $F = C_1 \land \cdots \land C_m$ be a 3-CNF formula over variables

$\{x_1, \ldots, x_n\}$

We construct $G = (V, E)$ as constituted by various components,
- For each variable \(X_i \), we have a truth-setting component \(T_i = (V_i, E_i) \) with \(V_i = \{ X_i, \overline{X}_i \} \)
 \[E_i = \{ \{ X_i, \overline{X}_i \} \} \]

 note: at least one of \(X_i, \overline{X}_i \) will be in every vertex cover to cover \(\{ X_i, \overline{X}_i \} \)

- For each clause \(C_j \) of \(F \), we have a satisfaction testing component \(S_j = (V'_j, E'_j) \)

\[
\begin{align*}
\circ_3j & \quad \circ_2j & \quad \circ_1j \\
\end{align*}
\]

note: at least two of \(V'_j \) will be in every vertex cover to cover \(E'_j \)

- We have a communication component, which is the only part that depends on which literals are in which clauses.

Let \(C_j = c_{1j} + c_{2j} + c_{3j} \)

Then we have \(E''_j = \{ \{ \circ_1j, c_{1j} \}, \{ c_{2j}, \circ_2j \}, \{ c_{3j}, \circ_3j \} \} \)

We then set \(K = m + 2m \equiv \text{number of variables} + \text{number of clauses} \)
Example: \(F = (\overline{x_1} + \overline{x_3} + \overline{x_4}) \cdot (\overline{x_1} + x_2 + \overline{x_4}) \)

\[k_2 = m + 2m = 4 + 2 \cdot 2 = 8 \]

We show that \(F \) is satisfiable \(\Rightarrow \) \(G \) has a vertex cover of size \(\leq k \)

\(\leq \) Let \(V' \subseteq V \) be a vertex cover for \(G \) with \(|V'| \leq k \).

We need that \(V' \) contains one vertex for each variable at least and two vertices for each clause.

This is already \(k_2 = m + 2m \)

\(\Rightarrow \) at least in actually exactly.

We use \(V' \) to obtain the truth assignment \(\text{if} \)

we set \(x_i = \text{true} \) if \(x_i \in V' \)

\(x_i = \text{false} \) if \(\overline{x_i} \in V' \)

To show that \(\text{if} \) is a truth assignment that satisfies \(F \),

we must that all clauses of the connection components are covered by \(V' \).

Consider a clause \(C_i = \overline{x_j} \vee \overline{x_k} \vee x_l \).

- two of the ones in \(E_i \) are covered by the choice of

\(x_j \) among \(x_i, \overline{x_i}, a_j, \overline{a_j}, a_k, \overline{a_k} \) in \(V' \).

We say, let there be \(a_j, \overline{a_j}, a_k, \overline{a_k} \)
the third one is then covered by the literal \(l_{3j} \) (connected to \(e_{3j} \)) which has to be in \(V' \).

Since, by definition of \(\phi \), \(l_{3j} = \text{true} \), \(C_j \) is satisfied.

\(\Rightarrow \) Let \(\phi \) be a truth assignment that satisfies \(F \).

We define a subset \(V' \subset V \) as follows:

- \(x_i \in V' \) iff \(\phi(x_i) = \text{true} \)
- \(\overline{x_i} \in V' \) iff \(\phi(x_i) = \text{false} \)

Since \(\phi \) satisfies \(F \), for each communication component \(E''_j = \{e_{1j}, l_{1j}\}, \{e_{2j}, l_{2j}\}, \{e_{3j}, l_{3j}\} \)

one of the three edges \(\{e_{ij}, l_{ij}\} \) is covered in \(V' \) by \(l_{ij} \).

W.l.o.g., let \(i = 1 \). Then \(\{e_{2j}, l_{2j}\}, \{e_{3j}, l_{3j}\} \) can be covered by having \(e_{3j} \in V' \) and \(e_{3j} \in V' \).

We get that \(V' \) contains \(n + 2m \) vertices.
Exercise (10.3.2): The problem $4TA-SAT$ is defined as follows:

Given a propositional formula E, does E have at least 4 satisfying truth assignments?

Show that $4TA-SAT$ is NP-complete.

Proof:

1) $4TA-SAT$ is in NP

We devise a non-deterministic poly-time algorithm:

1. Guess 4 truth-assignments T_1, T_2, T_3, T_4
2. Check that T_1, T_2, T_3, T_4 all satisfy E

Note that both steps require time polynomial in the size of E

2) $4TA-SAT$ is NP-hard

We show this by reducing SAT to $4TA-SAT$.

Let E be a propositional formula, and let x_1, \ldots, x_n be all variables in E.

We construct a new formula E' as:

$$ EE \in SAT \iff E' \in 4TA-SAT $$

Let y_1, y_2 be two new variables. Then

$$ E' = E \lor ((x_1 \land x_2 \land \ldots \land x_n) \land (y_1 \land \overline{y_2}) \lor (y_1 \land \overline{y_2}) \lor (\overline{y_1} \land y_2)) $$
Consider the truth assignments for \(k_1, ..., k_n, y_1, y_2 \)

\[
\begin{array}{c|c|c|c|c|c|c|c}
 & k_1 & k_2 & k_n & y_1 & y_2 & \text{Case 1} & \text{Case 2} \\
 \hline
 1) & T & T & T & T & T & E & E' \\
 2) & T & T & T & T & F & F & F \\
 3) & T & T & T & F & T & F & F \\
 4) & T & T & T & F & F & F & F \\
 \vdots & \vdots \\
 2^{n+2} & F & F & F & F & F & E & T \\
\end{array}
\]

Alternative solution:

\[E' = E \land (y_1 \lor y_2 \lor y_3) \]

- If \(E \) is unsatisfiable, then \(E' \) is unsatisfiable, and hence \(E' \not\in \text{SAT} \)

- If \(E \) is satisfiable, then \(E' \) has at least 7 satisfying truth assignments; these are obtained by combining
 - a TA for \(k_1, ..., k_n \) satisfying \(E \) with
 - the 7 TAs for \(y_1, y_2, y_3 \) satisfying \(y_1 \lor y_2 \lor y_3 \)
Exercise 11.11 b)

Consider the problem \textit{FALSE-SAT}:

Given a boolean expression \(E \) that is false when all its variables are made false, is there some other truth assignment that makes \(E \) false besides all-false?

Decide whether the problem is in \textit{NP} or \textit{coNP}.

Describe its complement.

If the problem or its complement is \textit{NP-complete}, prove it.

Proof:

The problem is \textit{NP-complete}.

- In \textit{NP}:
 - Given a boolean expression \(E \), we need to check:
 1) that \(E \) is false when all variables are assigned false
 2) that there is some other truth assignment making \(E \) false

 (1) can be done in poly-time by a DTM
 (2) can be done in poly-time by a NTM

 - guess a truth assignment \(T \) different from all-false, and
 answer yes if under \(T \), \(E \) evaluates to false

- \textit{NP-hard}:
 - by a reduction from \textit{SAT}

 Let \(E \) be a boolean expression with variables \(x_1, \ldots, x_n \).
 We construct an expression \(E' \) s.t. \(E \in \text{SAT} \iff E' \in \text{FALSE-SAT} \)

 1) test if \(E \) is true when all variables are false (polynomial)

 - if so, \(E \in \text{SAT} \), and we convert it to a fixed expression
 that is in \text{FALSE-SAT}, e.g., \(\land \).

2) Otherwise, let E' be $\neg E \wedge (x_1 \vee x_2 \vee \cdots \vee x_n)$. Clearly, the reduction is poly-time.

We have that E' is false when all of x_1, \ldots, x_n are false. Notice that in case (2), E is false when all variables are false. Hence, if $E \in \text{SAT}$, then it is satisfied by a truth assignment T different from all-false. Thus, $\neg E$ is made false by T, and $E' \in \text{FALSE-SAT}$.

Conversely, if $E' \in \text{FALSE-SAT}$, then since x_1, x_2, \ldots, x_n is false only for the all-false truth assignment, there must be some other truth-assignment T that makes $\neg E$ false. Then T makes E true, and $E \in \text{SAT}$.