Basic notations and definitions

Sets

Set:
- explicit notation: e.g. \(V = \{0, 1, 2, \ldots m\} \)
- informally, we also use... e.g. \(\mathbb{N} = \{0, 1, 2, \ldots \} \)
- using a set former, i.e.: \(\{ x \mid E(x) \} \)
 where \(E(x) \) is a boolean expression depending on \(x \)
 e.g.: \(\{ x \mid x \in \mathbb{N} \land x \geq 10 \land x \leq 50 \} \)

Subset: \(A \subseteq B \) denotes that \(A \) is a subset of \(B \) (or \(A \) is contained in \(B \))

\(\forall x : \text{if } x \in A \text{ then } x \in B \)

NB: \(A \subseteq B \) means \(A \subseteq B \) and \(A \neq B \)

\(\mathcal{B} \subseteq \mathcal{A} \)

We may have sets whose elements are themselves sets

e.g.: \(A = \{0, 3\}, \{0, 2, 3\} \)
\(B = \{0, 3\}, \{0, 2\}, \{1, 2, 3\} \)

If \(A \subseteq B \), this does not simply everything not the containment between \(x \in A \) and \(y \in B \), e.g.: \(x \subseteq y \)

Gonerset: of a set \(A \): denoted \(2^A \)

\(2^A = \{ x \mid x \subseteq A \} \)

NB: \(x \in 2^A \iff x \subseteq A \)
Set operations:
- Intersection: \(A \cap B = \{ x \mid x \in A \land x \in B \} \)
- Union: \(A \cup B = \{ x \mid x \in A \lor x \in B \} \)
- Difference: \(A \setminus B = \{ x \mid x \in A \land x \notin B \} \)

When we refer to an implicit universe \(U \), we may denote with \(\overline{A} \) the complement of \(A \) (with \(U \))
\[\overline{A} = U \setminus A \quad \text{(e.g. } U = \mathbb{N} \text{ or } U = \Sigma^*) \]

Cartesian product of sets \(A_1, A_2, \ldots, A_n \)
\[A_1 \times A_2 \times \cdots \times A_n = \{ (x_1, \ldots, x_n) \mid x_1 \in A_1, \ldots, x_n \in A_n \} \]
... set of n-tuples of elements respectively of \(A_1, \ldots, A_n \)

Relations
- Binary relation between two sets \(A \) and \(B \)
\[R \subseteq A \times B \]
\[\text{e.g. } \leq \subseteq \mathbb{N} \times \mathbb{N} \text{ is defined as } \]
\[\leq = \{ (x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}, \text{then } x + k = y \} \]
- We may use n-ary notation: \((x, y) \in R \iff x R y \)
- \((x, y) \in \leq \iff x \leq y \)
- A relation \(R \subseteq S \times S \) for some set \(S \), is called a precedence relation.
 - Reflexive: \(\forall s \in S : s R s \)
 - Symmetric: \(\forall a, b \in S : \text{if } a R b \text{ then } b R a \)
 - Transitive: \(\forall a, b, c \in S : \text{if } a R b \text{ and } b R c \text{ then } a R c \)
 - Antisymmetric: \(\forall a, b : \text{if } a R b \text{ and } b R a \text{ then } a = b \)
- Types of precedence relations:
 - equivalence: reflexive, symmetric, and transitive
 - preorder: reflexive and transitive
 - partial order: antisymmetric preorder
 - total order on S: for all $x, y \in S$, either $x \leq y$ or $y \leq x$

When $\prec \in S \times S$ is a partial order (on S), we say also that (S, \prec) is a partially ordered set.

- minimal element $\preceq \in S$: $\forall y \in S : y \not\prec x$
- maximal $\quad \supseteq \quad x \not\prec y$

- Transitive closure of $R \subseteq S \times S$, denoted R^+

$$R^+ = \bigcup_{n \in \mathbb{N}} R^n$$

with

$$R^0 = R$$

$$R^{n+1} = \{ (e, c) | \exists b : (e, b) \in R^n \land (b, c) \in R \}$$

Functions:

Consider an n-ary relation $R \subseteq A_1 \times \cdots \times A_n$ and $k \leq n$.

Then R is a k-argument function if

for each k-tuple $(x_1, \ldots, x_k) \in A_1 \times \cdots \times A_k$

there is a unique $(n-k)$-tuple $(x_{k+1}, \ldots, x_n) \in A_{k+1} \times \cdots \times A_n$

such that $(x_1, \ldots, x_k, x_{k+1}, \ldots, x_n) \in R$.

We denote this as $R : A_1 \times \cdots \times A_k \to A_{k+1} \times \cdots \times A_n$.
\(A_0 \times \cdots \times A_n \) \text{ domain of } R

\(A_0 \times \cdots \times A_n \) \text{ co-domain of } R

We may use \(R \) to denote an \(n \)-tuple of elements, i.e.

\(R = \langle x_1, \ldots, x_n \rangle \) \text{ (where } n \text{ depends on the context)}

For simplicity, we consider now just functions \(f : A \to B \)

\(f : A \to B \) is also a relation \(f \subseteq A \times B \).

The converse does in general not hold.

But we can associate to each \(R \subseteq A \times B \) a function

\[f_R : A \to 2^B \text{ with } f_R(x) = \{ y \mid x R y \} \]

\(f : A \to B \) is

- bijective if \(f(x_1) = f(x_2) \) implies \(x_1 = x_2 \)
- injective if \(\forall y \in B, \exists x \in A : f(x) = y \)
- surjective if \(\forall y \in B, \exists x \in A : f(x) = y \)

For \(D \subseteq A \), \(\{D\} \) denotes the image of \(D \) via \(f \), i.e.

\[\{D\} = \{ y \mid \exists x \in D, f(x) = y \} \]

\(f^{-1} \) denotes the inverse of \(f \).

\(f^{-1} \) may not be a function,

But we can always define for \(D \subseteq B \) the inverse image of \(D \)

\[f^{-1}(D) = \{ x \mid x \in A \land \{x\} \in D \} \]
Partial functions:

\[f : A \rightarrow B \] is total if it is defined for every \(x \in A \).

i.e. if \(\forall x \in A : \exists y \in B : f(x) = y \) (i.e., \(x \in \text{dom } f \))

If \(f \) is not defined for some \(x \in A \) it is called partial.

We denote partial functions with Greek letters.

We use \(A \rightarrow B \) to denote the set of total functions from \(A \) to \(B \).

We use \(\downarrow x \) when \(f \) is defined on \(x \).

\[\cdots \quad f(x) \uparrow \quad \cdots \quad \text{is not defined} \quad \cdots \]

Domain of \(f \):
\[\text{dom } (f) = \{ x \mid f(x) \downarrow \} \]

Range of \(f \):
\[\text{range } (f) = \{ x \mid \exists y, f(y) = x \uparrow \} \]

(Where \(\uparrow \) denotes the undefined value.)

Cardinality of sets:

\(|S| \) denotes the cardinality of a set \(S \).

- When \(S \) is finite, then \(|S| \) is the number of its elements.
- When \(S \) is infinite, defining \(|S| \) is more complicated.

Definitions:
- \(A \) and \(B \) are equinumerous if there is a bijection \(f : A \rightarrow B \), written \(A \cong B \).
- Then \(|S| \) denotes the collection of sets \(Y \) such that \(Y \cong S \).
- \(|A| \leq |B| \) if there is an injection \(f : A \rightarrow B \).

Case \(: \) if \(A \subset B \) then \(|A| \leq |B| \).

\(A < B \) if \(A \subset B \) but \(A \neq B \).
Basic definitions about languages:

- **Alphabet**: finite, nonempty set of symbols: \(\Sigma \)

 - e.g.: \(\Sigma = \{ 0, 1 \} \)
 - \(\Sigma = \{ a, b, \ldots, z \} \)
 - \(\Sigma \) = set of Unicode characters

- **String**: finite sequence of symbols from \(\Sigma \)

 \[w = a_1 a_2 \ldots a_n, \text{ with } a_i \in \Sigma \text{ for } i \in \{1, \ldots, n\} \]

 - e.g.: \(01101 \)
 - ciano ciao

 - **Empty string**: denoted \(\varepsilon \); string with no symbols

 - **Length of a string**: number of (positions for) symbols in the string

 \[|w| \]

 - of \(w = a_1 \ldots a_n \), then \(|w| = n \)

 - e.g.: \(|\varepsilon| = 0 \)
 - \(|\varepsilon| = 0 \) is the only string of length 0
 - \(|\varepsilon| = 1 \)
 - ciao ciao | = 8

 Notice: strictly speaking, the number of symbols in ciao ciao is 4

- **Powers of an alphabet**:

 \[\Sigma^k = \Sigma \times \Sigma \times \cdots \times \Sigma \]

 - \(k \) times
 - length \(k \)

 - e.g.: \(\Sigma^0 = \{ \varepsilon \} \)

 \[\{0,1\}^4 = \{0,1\} \]

 - what is the difference between this and \(\{0,1\}^2 \)?
Closure of an alphabet Σ: Σ^* is the set of all finite strings over Σ

i.e. $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots$

also $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \ldots$ hence $\Sigma^* = \Sigma^0 \cup \Sigma^+

Note: all strings in Σ^* are finite
Σ^* is an infinite set

i.e. $\Sigma = \{0, 1\}$
$\Sigma^* = \{0, 1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$

Concatenation of two strings:
$x = a, a_2, \ldots, a_m \in \Sigma^*$
$y = b_1, b_2, \ldots, b_n \in \Sigma^*$

$\Rightarrow xy = a, a_2, \ldots, a_m b_1, b_2, \ldots, b_n$ (we may omit the ε)

Note: $\varepsilon, x = x \cdot \varepsilon = x$, i.e. ε is the identity for conc.
$|xy| = |x| + |y|

Language L over Σ: is any subset of Σ^* (i.e. $L \subseteq \Sigma^*$)

Note: L contains only finite strings, but it may be infinite

Examples:

$\Sigma = \{0, 1, \ldots, 2\}$
$L = \text{set of all English words}$

$\{0, 1\}$
$L = \{\varepsilon, 01, 0011, 000111, \ldots\}$ all strings with equal # of 0 and 1, with all 0's preceding the 1's

\emptyset the empty language (i.e. $\{\varepsilon\}$)
$L = \text{valid ASCII characters}$
$L = \text{all legal C programs}$
$L = \text{all legal Java programs}$