Exercise 1:

Give algorithms to tell whether

a) a given regular language \(L \) is universal.
(i.e. \(L = \Sigma^* \))

b) two regular languages have at least one string in common.

Exercise 2:

Using the characterization of regular languages in terms of DFAs, show the following:

If \(L_1 \) and \(L_2 \) are regular, then so is \(L_1 \cap L_2 \).

Do not rely on De Morgan's law \(L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2} \).

Apply the construction of a DFA for \(L_1 \cap L_2 \) to the following DFAs \(A_1 \) for \(L_1 \) and \(A_2 \) for \(L_2 \):

\[A_1 : \]

\[A_2 : \]

Note: we can assume that \(L_1 \) and \(L_2 \) are RLs over the same alphabet \(\Sigma \).
SOLUTIONS

1) a) \(L = \Sigma^* \), then \(\overline{L} = \Sigma^\star = \emptyset \)

Hence, we need to check whether \(\overline{L} \) is empty.

Algorithm when \(L \) is given as a DFA \(D_L \):

1) Construct a DFA \(D_{\overline{L}} \) s.t.: \(L(D_{\overline{L}}) = \overline{L} \) by swapping final and non-final states of \(D_L \).

2) Check whether \(D_{\overline{L}} \) is empty (by constructing the set of states reachable from the initial state, and checking whether it contains at least one final state).

Algorithm when \(L \) is given as an NFA \(N_L \):

1) Determine \(N_{\overline{L}} \), i.e. construct a DFA \(D_{\overline{L}} \) s.t.: \(L(D_{\overline{L}}) = L(N_{\overline{L}}) \) (Note: \(D_{\overline{L}} \) might have a number of states that is exponential in the number of states of \(N_L \)).

2) Proceed as in the case of a DFA

Algorithm when \(L \) is given as a RE \(E_L \):

1) Construct an \(\epsilon \)-NFA \(N_{\epsilon_L} \) s.t.: \(L(N_{\epsilon_L}) = L(E_L) \)

2) Eliminate \(\epsilon \)-transitions from \(N_{\epsilon_L} \) obtaining an NFA \(N_L \) s.t.: \(L(N_L) = L(N_{\epsilon_L}) \)

3) Proceed as in the case of an NFA
1) b) To check whether two RLs \(L_1 \) and \(L_2 \) have at least one string in common, we can check whether \(L_1 \cap L_2 \) is non-empty.

Algorithm:

1) Construct a DFA/NFA/\(\varepsilon \)-NFA/RE for \(L_1 \cap L_2 \), starting from DFA/NFA/\(\varepsilon \)-NFA/REs for \(L_1 \) and for \(L_2 \).

2) Check whether \(L_1 \cap L_2 \) is non-empty.

Note: to construct a DFA/NFA/\(\varepsilon \)-NFA/RE for \(L_1 \cap L_2 \), we can use De Morgan's law.
- \(L_1 \cap L_2 \) is still a RL, since RLs are closed under intersection.
2) Let $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ be a DFA s.t. $L(A_1) = L_1$. Set $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ s.t. $L(A_2) = L_2$.

Consider a string w accepted by both A_1 and A_2. Let $w = e_1 e_2 \ldots e_n$. Then we have

\[
\begin{align*}
q_{01} &\xrightarrow{a_1} p_1 & q_{02} &\xrightarrow{a_1} p'_1 \\
q_{01} &\xrightarrow{a_2} p_2 & q_{02} &\xrightarrow{a_2} p'_2 \\
&\quad \vdots & &\quad \vdots \\
q_{01} &\xrightarrow{a_n} p_n & q_{02} &\xrightarrow{a_n} p'_n \in F_1 \\
q_{01} &\xrightarrow{a_1} p_n & q_{02} &\xrightarrow{a_2} p'_n \in F_2
\end{align*}
\]

Hence we can construct a DFA $A = (Q, \Sigma, \delta, q_0, F)$ that simulates the transitions of both A_1 and A_2:

- Each state of A is a pair of states (q_1, q_2), where $q_1 \in Q_1$ and $q_2 \in Q_2$. Hence $Q = Q_1 \times Q_2$.
- The initial state q_0 is the pair of initial states of Q_1 and Q_2. Hence $q_0 = (q_{01}, q_{02})$.
- The set of final states is such that both A_1 and A_2 accept if A accepts, hence $F = F_1 \times F_2$.
- The transition function δ simulates the transitions of both A_1 and A_2: If A is in state (q_1, q_2), then on input a it goes to a state (q'_1, q'_2), where $q'_1 = \delta_1(q_1, a)$ and $q'_2 = \delta_2(q_2, a)$.

Hence, for all $a \in \Sigma$, $q_1 \in Q_1$, $q_2 \in Q_2$:

$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$.
One can show that A_\cap constructed in this way accepts $L(A_1) \cap L(A_2)$.

A_\cap is called the **product automaton**.

By applying this construction to the automata A_1 and A_2, we obtain

We have used q_{ij} to denote (q_i, q_j).