Exercise 1: Consider the Boolean expression

\[E = (\neg x_3 \land \neg ((\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2))) \lor \\
(\neg x_3 \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)) \]

Construct a boolean circuit that computes the value of \(E \), given inputs for \(x_1, x_2, x_3 \).

What is the size of this circuit? \(6 \) \hspace{1cm} (7 does not count)

What is the depth? \(4 \)

How does the size compare to the length of \(E \)?
Exercise: Reduction from Reachability to Circuit Value

Reachability: given a directed graph $G = (V, E)$
with $V = \{1, \ldots, n\}$ and $E \subseteq V \times V$,
is there a path from node 1 to node n in G?

Circuit Value: given a Boolean circuit C without input variables, is the output of C equal to T?

We show how to reduce Reachability to Circuit Value, i.e.,
how to construct from a graph G a circuit $R(G)$ such that:

1. is reachable from n in G if and only if
2. the value of $R(G)$ is T.

In $R(G)$ we use gates of two forms:

1) g_{ij}^{k}, with $1 \leq i, j \leq n$ and $0 \leq k \leq n$

 Intuitively, g_{ij}^{k} is true if $\circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ \rightarrow \bigcirc$
 all $\leq k$

 i.e., there is a path from i to j not using any intermediate node bigger than k.

2) h_{ijk}, with $1 \leq i, j, k \leq n$ if $\circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ \rightarrow \bigcirc$

 all $\leq k$

 i.e., there is a path from i to j not using any intermediate node bigger than k, but using k
as an intermediate node.
We describe now the gates and how they are connected.

- For \(k = 0 \), all \(g_{ij0} \) gates are constant gates

\[
\begin{align*}
\text{If} & \quad \text{iff} & \quad i = j, \text{ or } & \\
\text{if} & \quad i \rightarrow j \text{ in } G
\end{align*}
\]

This is how \(G_0 \) is reflected in \(R(G) \)

(Note that there are no \(g_{ij0} \) gates)

- For \(k = 1, 2, \ldots, n \)

- \(g_{ijk} \) is an AND gate with predecessors

\(g_{i,k,k-1} \) and \(g_{k,i,k-1} \)

- \(g_{ijk} \) is an OR gate with predecessors

\(g_{ij,k-1} \) and \(\text{high} \)

The output gate is \(g_{jmn} \).

Note that \(R(G) \) can be computed from \(G \) in logarithmic space.

Note that the circuit \(R(G) \) is legitimate, since it contains no cycles. We can remove the gates \(1, 2, \ldots, 2n^3 + n^2 \), in non-decreasing order of the third index, and with high preceding \(g_{ijk} \).

We have to show that the value of the output gate of \(R(G) \) is \(T \) if and only if there is a path from \(1 \) to \(m \) in \(G \).

We prove by induction on \(k \) that the values of the gates correspond to the informal meaning we gave them:

- For \(k = 0 \), this holds.

- If it is true up to \(k-1 \), the definitions of \(g_{ijk} \) and \(\text{high} \) guarantee that it is true also for \(k \).
Exercise: A boolean function f is said to be monotone if it has the following property: if one of the values changes from 0 to 1, then the value of f does not change from 1 to 0.

We show that f is monotone iff it can be expressed by a circuit with only AND and OR gates.

\Leftarrow Consider a circuit C with only AND and OR gates expressing f.

We show by induction on the depth of a node N:

- If the value of an input ξ changes from 0 to 1, then the value of N does not change from 1 to 0.

Base: depth $(N) = 0$, then N is either an input or a constant node.

- If it is a constant, its value does not change.
- If it is an input different from ξ, $-$
- If it is input ξ, its value changes from 0 to 1 (and not from 1 to 0)

Induction: suppose that for all nodes at level k, the value does not change from 1 to 0.

Consider a node N at least level $k+1$. We show that the value of N does not change from 1 to 0.

Case 1: N is an AND node.

Case 2: N is an OR node.
We need to consider various subcases, corresponding to the changes of \(y_1, y_2 \) from 0 to 1.

<table>
<thead>
<tr>
<th>old</th>
<th>new</th>
<th>(\text{AND})</th>
<th>(\text{OR})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>(y_2)</td>
<td>(y_3)</td>
<td>(y_4)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We see that both for an AND node and for an OR node, the output value never changes from 1 to 0.

\(\Rightarrow \) We show by induction on \(n \) that every monotone boolean function \(f(x_1, \ldots, x_n) \) of \(n \) variables can be represented by a circuit with AND and OR gates only.

Base case: 0 arguments: if \(f \) is constant, and hence monotone

Inductive case: assume the claim holds for \(n \).

We show it holds for a function \(f(x_1, \ldots, x_{n+1}) \).

We exploit the fact that

\[
\begin{align*}
 f(x_1, \ldots, x_n, x_{n+1}) &= (x_{n+1} \land f(x_1, \ldots, x_n, 1)) \lor \\
 &\quad (\overline{x_{n+1}} \land f(x_1, \ldots, x_n, 0))
\end{align*}
\]
Hence, we can construct a circuit C_f computing $f(x_1, \ldots, x_n, x_{n+1})$ as follows:

Observe that, since $f(x_1, \ldots, x_{n+1})$ is monotone, we have that also $f(x_1, \ldots, x_n, 0)$ and $f(x_1, \ldots, x_n, 1)$ are monotone.

Hence, since $f(x_1, \ldots, x_n, 0)$ and $f(x_1, \ldots, x_n, 1)$ are n-variable monotone functions, by inductive hypothesis, they can be represented by circuits with AND and OR gates only.

Hence, it suffices to show that we can get rid of the only remaining NOT gate.

Consider the following circuit C_f' in which we have eliminated the NOT gate.
Let us consider the possible values of f in C_6 and C'_6. It depends on the values of X_m, V_0, V_1.

<table>
<thead>
<tr>
<th>X_m</th>
<th>V_0</th>
<th>V_1</th>
<th>C_6</th>
<th>C'_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that $C_6 = C'_6$, except for case (7).

However, since $f(x_1, \ldots, X_m)$ is monotone, cases (3) and (7) cannot occur, since they would mean that $f(x_1, \ldots, X_m)$ changes from $V_0 = 1$ for $X_m = 0$ to $V_0 = 0$ for $X_m = 1$.

Hence, C'_6 is the correct circuit consisting of AND and OR gates only and computing $f(x_1, \ldots, X_m)$.