COURSE PRESENTATION FORM

COURSE NAME Theory of Computing
COURSE CODE 70101
LECTURER Diego Calvanese
TEACHING ASSISTANT Kurt Ranalter
TEACHING LANGUAGE English
CREDIT POINTS 8
LECTURE HOURS 48
EXERCISE HOURS 24
OFFICE HOURS Friday, 15:00 – 17:00
 Palais Trapp, Via della Mostra 4, office 2.08
OFFICE HOURS Time to be determined
 Via Sernesi 1, Block C, office 5.16
PREREQUISITES There are no prerequisites in terms of courses to attend. Students should be
 familiar with notions of mathematics and set theory, and with basic proof
 techniques, as taught in the mathematics courses of a bachelor in computer
 science.
OBJECTIVES The objective of the Theory of Computing course is to introduce and study
 abstract, mathematical models of computation (such as Turing machines,
 formal grammars, recursive functions), and to use the abstract computation
 models to study the ability to solve computational problems, by identifying
 both the intrinsic limitations of computing devices, and the practical
 limitations due to limited availability of resources (time and space). A second
 objective is to show how to reason and prove properties about computations
 in a precise, formal, abstract way.
SYLLABUS Formal languages, formal grammars, Turing Machines, recursive functions,
 undecidability, computational complexity, NP-completeness, time and space
 complexity classes.
TEACHING FORMAT Frontal lectures; exercises in class.
ASSESSMENT Midterm or final examination on the first half of the syllabus (50%) + final
 examination on the second half of the syllabus (50%). The two parts of the
 examination can be taken independently of each other within the three exam
 sessions of an academic year. Each part of the examination may be either
 written or oral.
READING LIST

Textbooks:

Further reading material:

SOFTWARE USED

None

LEARNING OUTCOME

After the course, students will know the fundamental models of computation, and the intrinsic and practical limitations of computing devices. They will also be familiar with formal techniques of computer science, and will be able to formally prove properties about computations.

COURSE PAGE

http://www.inf.unibz.it/~calvanese/teaching/tc/