Overview of Part 2: Ontology-based access to information

- Introduction to ontology-based access to information
 - Introduction to ontologies
 - Ontology languages
- Description Logics and the DL-Lite family
 - An introduction to DLs
 - DLs as a formal language to specify ontologies
 - Queries in Description Logics
 - The DL-Lite family of tractable DLs
- Linking ontologies to relational data
 - The impedance mismatch problem
 - OBDA systems
 - Query answering in OBDA systems
- Reasoning in the DL-Lite family
 - TBox reasoning
 - TBox & ABox reasoning
 - Complexity of reasoning in Description Logics
 - Reasoning in the Description Logic DL-Lite A

Outline

1. Introduction to ontologies
2. Ontology languages
Introduction to ontologies

Ontologies

Def.: **Ontology** is a representation scheme that describes a **formal conceptualization** of a domain of interest.

The specification of an ontology comprises several levels:

- **Meta-level**: specifies a set of **modeling categories**.
- **Intensional level**: specifies a set of **conceptual elements** (instances of categories) and of rules to describe the conceptual structures of the domain.
- **Extensional level**: specifies a set of **instances** of the conceptual elements described at the intensional level.

Different meanings of “Semantics”

- Part of **linguistics** that studies the meaning of words and phrases.
- **Meaning** of a set of symbols in some **representation scheme**. Provides a means to specify and communicate the intended meaning of a set of "syntactic" objects.
- **Formal semantics of a language** (e.g., an artificial language). (Meta-mathematical) mechanism to associate to each sentence in a language an element of a symbolic domain that is “outside the language”.

In **information systems**, meanings 2 and 3 are the relevant ones:

- In order to talk about semantics we need a representation scheme, i.e., an **ontology**.
- ... but 2 makes no sense without 3.

The three levels of an ontology
Introduction to ontologies

Ontology languages

Ontologies in information systems

Chap. 1: Introduction to ontology-based access to information

Ontologies at the core of information systems

The usage of all system resources (data and services) is done through the domain conceptualization.

Ontologies at the core of cooperation

The cooperation between systems is done at the level of the conceptualization.

Ontology mediated access to data

Desiderata: achieve logical transparency in access to data:
- Hide to the user where and how data are stored.
- Present to the user a conceptual view of the data.
- Use a semantically rich formalism for the conceptual view.

We will see that this setting is similar to the one of Data Integration. The difference is that here the ontology provides a rich conceptual description as the information managed by the system.

Three novel challenges

- **Languages**
- **Methodologies**
- **Tools**

... for specifying, building, and managing ontologies to be used in information systems.

Challenges related to ontologies

Part 2: Ontology-Based Access to Information

KBDB – 2008/2009
Challenge 1: Ontology languages

Several proposals for ontology languages have been made.

- **Tradeoff** between expressive power of the language and computational complexity of dealing with (i.e., performing inference over) ontologies specified in that language.
- Usability needs to be addressed.

In this course:

- We discuss variants of ontology languages suited for managing ontologies in information systems.
- We study the above mentioned tradeoff ...
- ... paying particular attention to the aspects related to data management.

Challenge 2: Methodologies

Developing and dealing with ontologies is a complex and challenging task.

- Developing good ontologies is even more challenging.
- It requires to master the technologies based on semantics, which in turn requires good knowledge about the languages, their semantics, and the implications it has w.r.t. reasoning over the ontology.

In this course:

- We study in depth the semantics of ontologies, with an emphasis on their relationship to data in information sources.
- We thus lay the foundations for the development of methodologies, though we do not discuss specific ontology-development methodologies here.

Challenge 3: Tools

According to the principle that “there is no meaning without a language with a formal semantics”, the formal semantics becomes the solid basis for dealing with ontologies.

- Hence every kind of access to an ontology (to extract information, to modify it, etc.), requires to fully take into account its semantics.
- We need to resort to tools that provide capabilities to perform automated reasoning over the ontology, and the kind of reasoning should be sound and complete w.r.t. the formal semantics.

In this course:

- We discuss the requirements for such ontology management tools.
- We will work with a tool that has been specifically designed for optimized access to information sources through ontologies.

A challenge across the three challenges: Scalability

When we want to use ontologies to access information sources, we have to address the three challenges of languages, methodologies, and tools by taking into account **scalability** w.r.t.:

- the size of (the intensional level of) the ontology
- the number of ontologies
- the size of the information sources that are accessed through the ontology/ontologies.

In this course we pay particular attention to the third aspect, since we work under the realistic assumption that the extensional level (i.e., the data) largely dominates in size the intensional level of an ontology.
Introduction to ontologies

Ontology languages
- Elements of an ontology language
- Intensional level of an ontology language
- Extensional level of an ontology language
- Ontologies and other formalisms
- Queries

Static vs. dynamic aspects

The aspects of the domain of interest that can be modeled by an ontology language can be classified into:

- **Static aspects**
 - Are related to the structuring of the domain of interest.
 - Supported by virtually all languages.

- **Dynamic aspects**
 - Are related to how the elements of the domain of interest evolve over time.
 - Supported only by some languages, and only partially (cf. services).

Before delving into the dynamic aspects, we need a good understanding of the static ones.

In this course we concentrate essentially on the static aspects.

Intensional level of an ontology language

An ontology language for expressing the intensional level usually includes:
- Concepts
- Properties of concepts
- Relationships between concepts, and their properties
- Axioms
- Queries

Ontologies are typically rendered as diagrams (e.g., Semantic Networks, Entity-Relationship schemas, UML Class Diagrams).
Def.: Concept

Is an element of an ontology that denotes a collection of instances (e.g., the set of "employees").

We distinguish between:
- **Intensional definition:** specification of name, properties, relations, …
- **Extensional definition:** specification of the instances

Concepts are also called **classes, entity types, frames**.

Def.: Property

Is an element of an ontology that qualifies another element (e.g., a concept or a relationship).

Property definition (intensional and extensional):
- **Name**
- **Type:** may be either
 - atomic (integer, real, string, enumerated, …), or e.g., `eye-color` → `{blu, brown, green, grey}`
 - structured (date, set, list, …) e.g., `date` → `day/month/year`
- The definition may also specify a default value.

Properties are also called **attributes, features, slots**.

Def.: Relationship

Is an element of an ontology that expresses an association among concepts.

We distinguish between:
- **Intensional definition:** specification of involved concepts e.g., `worksFor` is defined on `Employee` and `Project`
- **Extensional definition:** specification of the instances of the relationship, called facts e.g., `worksFor(domenico, tones)`

Relationships are also called **associations, relationship types, roles**.
Axioms

Def.: Axiom
Is a logical formula that expresses at the intensional level a condition that must be satisfied by the elements at the extensional level.

Different kinds of axioms/conditions:
- subclass relationships, e.g., $\text{Manager} \sqsubseteq \text{Employee}$
- equivalences, e.g., $\text{Manager} \equiv \text{AreaManager} \sqcup \text{TopManager}$
- disjointness, e.g., $\text{AreaManager} \sqcap \text{TopManager} \equiv \bot$
- (cardinality) restrictions, e.g., each Employee worksFor at least 3 Project
 -
Axioms are also called assertions. A special kind of axioms are definitions.

Comparison with other formalisms

- Ontology languages vs. knowledge representation languages: Ontologies are knowledge representation schemas.
- Ontology vs. logic: Logic is the tool for assigning semantics to ontology languages.
- Ontology languages vs. conceptual data models: Conceptual schemas are special ontologies, suited for conceptualizing a single logical model (database).
- Ontology languages vs. programming languages: Class definitions are special ontologies, suited for conceptualizing a single structure for computation.
Classification of ontology languages

- **Graph-based**
 - Semantic networks
 - Conceptual graphs
 - UML class diagrams, Entity-Relationship schemas

- **Frame based**
 - Frame Systems
 - OKBC, XOL

- **Logic based**
 - **Description Logics** (e.g., SHOIQ, DCL, DL-Lite, OWL, ...)
 - Rules (e.g., RuleML, LP/Prolog, F-Logic)
 - First Order Logic (e.g., KIF)
 - Non-classical logics (e.g., non-monotonic, probabilistic)

Ontology languages vs. query languages

- Tailored for capturing intensional relationships.
- Are quite **poor as query languages:**
 - Cannot refer to same object via multiple navigation paths in the ontology, i.e., allow only for a limited form of **join**, namely chaining.

Instead, **when querying** a data source (either directly, or via the ontology), to retrieve the data of interest, general forms of **joins** are required.

It follows that the constructs for queries may be quite different from the constructs used in the ontology to form concepts and relationships.

Queries

Def.: Query

Is an expression at the intensional level denoting a (possibly structured) collection of individuals satisfying a given condition.

Def.: Meta-Query

Is an expression at the meta level denoting a collection of ontology elements satisfying a given condition.

Note: One may also conceive queries that span across levels (**object-meta queries**), cf. [RDF], [CK06]

Example of query

```plaintext
q(ce, cm, se, sm) ← ∃e, p, m.
worksFor(e, p) ∧ manages(m, p) ∧ boss(m, e) ∧ empCode(e, ce) ∧
empCode(m, cm) ∧ salary(e, se) ∧ salary(m, sm) ∧ se ≥ sm
```
Query answering under different assumptions

Depending on the setting, query answering may have different meanings:

- Traditional databases: **complete information**
- Ontologies (or knowledge bases): **incomplete information**

Query answering in traditional databases

- Data are completely specified (CWA), and typically large.
- Schema/intensional information used in the design phase.
- At **runtime**, the data is assumed to satisfy the schema, and therefore the schema is not used.
- Queries allow for complex navigation paths in the data (cf. SQL).
- Query answering amounts to **query evaluation**, which is computationally easy.

Query answering in traditional databases – Example

For each concept/relationship we have a (complete) table in the DB.

DB:
- Employee = \{ john, mary, nick \}
- Manager = \{ john, nick \}
- Project = \{ prA, prB \}
- worksFor = \{ (john, prA), (mary, prB) \}

Query:

\[q(x) \leftarrow \exists p. \text{Manager}(x), \text{Project}(p), \text{worksFor}(x, p) \]

Answer: \{ john \}
Query answering over ontologies

- An ontology (or conceptual schema, or knowledge base) imposes constraints on the data.
- Actual data may be incomplete or inconsistent w.r.t. such constraints.
- The system has to take into account the constraints during query answering, and overcome incompleteness or inconsistency.

Query answering amounts to logical inference, which is computationally more costly.

Note:
- The size of the data is not considered critical (comparable to the size of the intensional information).
- Queries are typically simple, i.e., atomic (a class name), and query answering amounts to instance checking.

The tables in the database may be incompletely specified, or even missing for some classes/properties.

DB:
- Manager \(\supseteq \{ \text{john, nick} \} \)
- Project \(\supseteq \{ \text{prA, prB} \} \)
- worksFor \(\supseteq \{ (\text{john,prA}), (\text{mary,prB}) \} \)

Query: \(q(x) \leftarrow \text{Employee}(x) \)
Answer: \(\{ \text{john, nick, mary} \} \)

Query answering over ontologies – Example 2

Each person has a father, who is a person.

DB:
- Person \(\supseteq \{ \text{john, nick, toni} \} \)
- hasFather \(\supseteq \{ (\text{john,nick}), (\text{nick,toni}) \} \)

Queries:
- \(q_1(x,y) \leftarrow \text{hasFather}(x,y) \)
- \(q_2(x) \leftarrow \exists y. \text{hasFather}(x,y) \)
- \(q_3(x) \leftarrow \exists y_1, y_2, y_3. \text{hasFather}(x, y_1), \text{hasFather}(y_1, y_2), \text{hasFather}(y_2, y_3) \)
- \(q_4(x, y_3) \leftarrow \exists y_1, y_2. \text{hasFather}(x, y_1), \text{hasFather}(y_1, y_2), \text{hasFather}(y_2, y_3) \)

Answers:
- to \(q_1 \): \(\{ (\text{john,nick}), (\text{nick,toni}) \} \)
- to \(q_2 \): \(\{ \text{john, nick, toni} \} \)
- to \(q_3 \): \(\{ \text{john, nick, toni} \} \)
- to \(q_4 \): \(\{ \} \)
In OBDA, we have to face the difficulties of both assumptions:

- The actual data is stored in external information sources (i.e., databases), and thus its size is typically **very large**.
- The ontology introduces **incompleteness** of information, and we have to do logical inference, rather than query evaluation.
- We want to take into account at runtime the **constraints** expressed in the ontology.
- We want to answer **complex database-like queries**.
- We may have to deal with multiple information sources, and thus face also the problems that are typical of data integration.

Researchers are starting only now to tackle this difficult and challenging problem. In this course we will study state-of-the-art technology in this area.
What are Description Logics?

Description Logics (DLs) [BCM+03] are logics specifically designed to represent and reason on structured knowledge.

The domain of interest is composed of objects and is structured into:

- **concepts**, which correspond to classes, and denote sets of objects
- **roles**, which correspond to (binary) relationships, and denote binary relations on objects

The knowledge is asserted through so-called **assertions**, i.e., logical axioms.

Origins of Description Logics

DLs stem from early days Knowledge Representation formalisms (late '70s, early '80s):

- **Semantic Networks**: graph-based formalism, used to represent the meaning of sentences
- **Frame Systems**: frames used to represent prototypical situations, antecedents of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

Description Logics (a.k.a. Concept Languages, Terminological Languages) developed starting in the mid '80s, with the aim of providing semantics and inference techniques to knowledge representation systems.
DLs have evolved from being used “just” in KR.

Novel applications of DLs:
- Databases:
 - schema design, schema evolution
 - query optimization
 - integration of heterogeneous data sources, data warehousing
- Conceptual modeling
- Foundation for the Semantic Web (variants of OWL correspond to specific DLs)
- ...

A gentle introduction to DLs
DLs to specify ontologies
Queries in DLs
The DL-Lite family

Ingredients of Description Logics

Chap. 2: Description Logics and the DL-Lite family

Current applications of Description Logics

A DL is characterized by:
1. A description language: how to form concepts and roles
 - Human ⊓ Male ⊓ \exists hasChild ⊓ \forall hasChild
 - (Doctor ⊔ Lawyer)
2. A mechanism to specify knowledge about concepts and roles (i.e., a TBox)
 \[T = \{ \text{Father} \equiv \text{Human} \sqcap \text{Male} \sqcap \exists \text{hasChild}, \text{HappyFather} \sqsubseteq \text{Father} \sqcap \forall \text{hasChild}, (\text{Doctor} \sqcup \text{Lawyer}) \} \]
3. A mechanism to specify properties of objects (i.e., an ABox)
 \[A = \{ \text{HappyFather}(john), \text{hasChild}(john, mary) \} \]
4. A set of inference services: how to reason on a given KB
 \[T \models \text{HappyFather}(john), \text{hasChild}(john, mary) \]

Ingredients of a Description Logic

D. Calvanese
Part 2: Ontology-Based Access to Inform.
KBDB – 2008/2009 (48/220)

Description language

A description language provides the means for defining:
- concepts, corresponding to classes: interpreted as sets of objects;
- roles, corresponding to relationships: interpreted as binary relations on objects.

To define concepts and roles:
- We start from a (finite) alphabet of atomic concepts and atomic roles, i.e., simply names for concept and roles.
- Then, by applying specific constructors, we can build complex concepts and roles, starting from the atomic ones.

A description language is characterized by the set of constructs that are available for that.
Semantics of a description language

The formal semantics of DLs is given in terms of interpretations.

Def.: An interpretation \(\mathcal{I} = (\Delta^I, \cdot) \) consists of:

- a nonempty set \(\Delta^I \), the domain of \(\mathcal{I} \)
- an interpretation function \(\cdot^I \), which maps
 - each individual \(a \) to an element \(a^I \) of \(\Delta^I \)
 - each atomic concept \(A \) to a subset \(A^I \) of \(\Delta^I \)
 - each atomic role \(P \) to a subset \(P^I \) of \(\Delta^I \times \Delta^I \)

Note: A DL interpretation is analogous to a FOL interpretation, except that, by tradition, it is specified in terms of a function \(\cdot^I \) rather than a set of (unary and binary) relations.

The interpretation function is extended to complex concepts and roles according to their syntactic structure.

Additional concept and role constructors

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>disjunction</td>
<td>(C \sqcup D)</td>
<td>(C^I \sqcup D^I)</td>
</tr>
<tr>
<td>top</td>
<td>(T)</td>
<td>(\Delta^I)</td>
</tr>
<tr>
<td>qualified exist. restrictions</td>
<td>(\exists R.C)</td>
<td>{ (a \mid \exists b. (a,b) \in R^I \wedge b \in C^I } }</td>
</tr>
<tr>
<td>(\leq k R)</td>
<td>(\leq k)</td>
<td>{ (a \mid # { b \mid (a,b) \in R^I } \leq k } }</td>
</tr>
<tr>
<td>(\geq k R)</td>
<td>(\geq k)</td>
<td>{ (a \mid # { b \mid (a,b) \in R^I } \geq k } }</td>
</tr>
<tr>
<td>inverse role</td>
<td>(\overset{\text{inv}}{R})</td>
<td>{ ((a,b) \mid (b,a) \in R^I } }</td>
</tr>
<tr>
<td>role closure</td>
<td>(\overset{\text{rcl}}{R})</td>
<td>((R^I)^*)</td>
</tr>
</tbody>
</table>

Many different DL constructs and their combinations have been investigated.

Concept constructors

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic concept</td>
<td>(A)</td>
<td>Doctor</td>
<td>(A^I \subseteq \Delta^I)</td>
</tr>
<tr>
<td>atomic role</td>
<td>(P)</td>
<td>hasChild</td>
<td>(P^I \subseteq \Delta^I \times \Delta^I)</td>
</tr>
<tr>
<td>atomic negation</td>
<td>(\neg A)</td>
<td>\neg Doctor</td>
<td>(\Delta^I \setminus A^I)</td>
</tr>
<tr>
<td>conjunction</td>
<td>(C \sqcap D)</td>
<td>Hum \sqcap Male</td>
<td>(C^I \sqcap D^I)</td>
</tr>
<tr>
<td>(unqual.) exist. res.</td>
<td>(\exists R)</td>
<td>\exists hasChild</td>
<td>{ (a \mid \exists b. (a,b) \in R^I } }</td>
</tr>
<tr>
<td>value restriction</td>
<td>(\forall R.C)</td>
<td>\forall hasChild, Male</td>
<td>{ (a \mid \forall b. (a,b) \in R^I \rightarrow b \in C^I } }</td>
</tr>
<tr>
<td>bottom</td>
<td>(\bot)</td>
<td></td>
<td>{ }</td>
</tr>
</tbody>
</table>

(\(C, D \) denote arbitrary concepts and \(R \) an arbitrary role)

The above constructs form the basic language \(\mathcal{AL} \) of the family of \(\mathcal{AL} \) languages.

Further examples of DL constructs

- Disjunction: \(\forall hasChild.(Doctor \sqcup Lawyer) \)
- Qualified existential restriction: \(\exists hasChild.Dr. \)
- Full negation: \(\neg (Doctor \sqcup Lawyer) \)
- Number restrictions: \(\exists (\geq 2 \text{ hasChild} \cap (\leq 1 \text{ sibling}) \)
- Qualified number restrictions: \(\exists (\geq 2 \text{ hasChild}, \text{ Doctor}) \)
- Inverse role: \(\forall hasChild^-.Dr. \)
- Reflexive-transitive role closure: \(\forall hasChild^+.Dr. \)
Reasoning on concept expressions

An interpretation I is a model of a concept C if $C^I \neq \emptyset$.

Basic reasoning tasks:
- **Concept satisfiability**: does C admit a model?
- **Concept subsumption** $C \subseteq D$: does $C^I \subseteq D^I$ hold for all interpretations I?

Subsumption is used to build the concept hierarchy:

![Concept Hierarchy Diagram]

Note: (1) and (2) are mutually reducible if DL is propositionally closed.

Complexity of reasoning on concept expressions

<table>
<thead>
<tr>
<th>Description Logics</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC, ALN</td>
<td>PTIME</td>
</tr>
<tr>
<td>ALU, $ALUN$</td>
<td>NP-complete</td>
</tr>
<tr>
<td>ALC</td>
<td>coNP-complete</td>
</tr>
<tr>
<td>ALC, $ALCNI$, $ALCQI$</td>
<td>PSPACE-complete</td>
</tr>
</tbody>
</table>

Observations:
- Two sources of complexity:
 - union (\cup) of type NP,
 - existential quantification (\exists) of type coNP.
- When they are combined, the complexity jumps to PSPACE.
- Number restrictions (\mathbb{N}) do not add to the complexity.

Description Logics ontology (or knowledge base)

Is a pair $O = (T, A)$, where T is a TBox and A is an ABox:

Def.: Description Logics TBox

Consists of a set of assertions on concepts and roles:
- Inclusion assertions on concepts: $C_1 \subseteq C_2$
- Inclusion assertions on roles: $R_1 \subseteq R_2$
- Property assertions on (atomic) roles:
 - (transitive P) (symmetric P) (domain $P C$)
 - (functional P) (reflexive P) (range $P C$) ···

Def.: Description Logics ABox

Consists of a set of membership assertions on individuals:
- for concepts: $A(c)$
- for roles: $P(c_1, c_2)$
 (we use c_i to denote individuals)
Description Logics knowledge base – Example

Note: We use $C_1 \equiv C_2$ as an abbreviation for $C_1 \sqsubseteq C_2$, $C_2 \sqsubseteq C_1$.

TBox assertions:
- Inclusion assertions on concepts:
 - Father \equiv Human \sqcap Male \sqcap hasChild
 - HappyFather \sqsubseteq Father \sqcap hasChild.(Doctor \sqcup Lawyer \sqcup HappyPerson)
 - HappyAnc \sqsubseteq \foralldescendant.HappyFather
 - Teacher \sqsubseteq \negDoctor \sqcap \negLawyer
- Inclusion assertions on roles:
 - hasChild \subseteq descendant
 - hasFather \subseteq hasChild
- Property assertions on roles:
 - (transitive descendant), (reflexive descendant), (functional hasFather)

ABox membership assertions:
- Teacher(mary), hasFather(mary,john), HappyAnc(john)

Models of a Description Logics ontology

Def.: Model of a DL knowledge base

An interpretation I is a model of $O = \langle T, A \rangle$ if it satisfies all assertions in T and all assertions in A.

O is said to be satisfiable if it admits a model.

The fundamental reasoning service from which all other ones can be easily derived is...

Def.: Logical implication

O logically implies an assertion α, written $O \models \alpha$, if α is satisfied by all models of O.

Semantics of a Description Logics knowledge base

The semantics is given by specifying when an interpretation I satisfies an assertion:

- $C_1 \subseteq C_2$ is satisfied by I if $C_1^I \subseteq C_2^I$.
- $R_1 \sqsubseteq R_2$ is satisfied by I if $R_1^I \subseteq R_2^I$.
- A property assertion (prop P) is satisfied by I if P^I is a relation that has the property prop.
 (Note: domain and range assertions can be expressed by means of concept inclusion assertions.)

- $A(c)$ is satisfied by I if $c^I \in A^I$.
- $P(c_1, c_2)$ is satisfied by I if $(c_1^I, c_2^I) \in P^I$.

We adopt the unique name assumption, i.e., $c_1^I \neq c_2^I$, for $c_1 \neq c_2$.

TBox reasoning

- **Concept Satisfiability:** C is satisfiable wrt T, if there is a model I of T such that C^I is not empty, i.e., $T \models C \sqsubseteq \bot$.
- **Subsumption:** C_1 is subsumed by C_2 wrt T, if for every model I of T we have $C_1^I \sqsubseteq C_2^I$, i.e., $I \models C_1 \sqsubseteq C_2$.
- **Equivalence:** C_1 and C_2 are equivalent wrt T if for every model I of T we have $C_1^I \equiv C_2^I$, i.e., $I \models C_1 \equiv C_2$.
- **Disjointness:** C_1 and C_2 are disjoint wrt T if for every model I of T we have $C_1^I \cap C_2^I = \emptyset$, i.e., $I \models C_1 \sqcup C_2 \equiv \bot$.
- **Functionality implication:** A functionality assertion (funct R) is logically implied by T if for every model I of T, we have that $(o, a_1) \in R^I$ and $(o, a_2) \in R^I$ implies $a_1 = a_2$, i.e., $T \models (\text{funct } R)$.

Analogous definitions hold for role satisfiability, subsumption, equivalence, and disjointness.
Reasoning over an ontology

- **Ontology Satisfiability**: Verify whether an ontology O is satisfiable, i.e., whether O admits at least one model.

- **Concept Instance Checking**: Verify whether an individual c is an instance of a concept C in O, i.e., whether $O \models C(c)$.

- **Role Instance Checking**: Verify whether a pair (c_1, c_2) of individuals is an instance of a role R in O, i.e., whether $O \models R(c_1, c_2)$.

- **Query Answering**: see later . . .

Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning over concept expressions:

Bad news:
- without restrictions on the form of TBox assertions, reasoning over DL ontologies is already **ExpTime-hard**, even for very simple DLs (see, e.g., [Don03]).

Good news:
- We can add a lot of expressivity (i.e., essentially all DL constructs seen so far), while still staying within the ExpTime upper bound.
- There are DL reasoners that perform reasonably well in practice for such DLs (e.g., Racer, Pellet, Fact++, . . .) [MH03].
Relationship between DLs and ontology formalisms

- DLs are nowadays advocated to provide the foundations for ontology languages.
- Different versions of the W3C standard Web Ontology Language (OWL) have been defined as syntactic variants of certain DLs.
- DLs are also ideally suited to capture the fundamental features of conceptual modeling formalisms used in information systems design:
 - Entity-Relationship diagrams, used in database conceptual modeling
 - UML Class Diagrams, used in the design phase of software applications

We briefly overview these correspondences, highlighting essential DL constructs, also in light of the tradeoff between expressive power and computational complexity of reasoning.

DLs vs. OWL2

A new version of OWL, **OWL2**, is currently being standardized:

- **OWL2 DL** is a variant of $\text{SROIQ}(D)$, which adds to OWL1 DL several constructs, while still preserving satisfiability of reasoning.
 - O stands for qualified number restrictions.
 - R stands for regular role hierarchies, where role chaining might be used in the left-hand side of role inclusion assertions, with suitable acyclicity conditions.
- **OWL2 defines also three profiles**: OWL2 QL, OWL2 EL, OWL2 EL.
 - Each profile corresponds to a syntactic fragment (i.e., a sub-language) of OWL2 DL that is targeted towards a specific use.
 - The restrictions in each profile guarantee better computational properties than those of OWL2 DL.
 - The OWL2 QL profile is derived from the DLs of the DL-Lite family (see later).

DLs vs. OWL

The Web Ontology Language (OWL) comes in different variants:

- **OWL1 Lite** is a variant of the DL $\text{SHIF}(D)$, where:
 - S stands for ALC extended with transitive roles,
 - N stands for role hierarchies (i.e., role inclusion assertions),
 - I stands for inverse roles,
 - F stands for functionality of roles,
 - (D) stand for data types, which are necessary in any practical knowledge representation language.
- **OWL1 DL** is a variant of $\text{SHOIN}(D)$, where:
 - O stands for nominals, which means the possibility of using individuals in the TBox (i.e., the intensional part of the ontology),
 - N stands for (unqualified) number restrictions,

DL constructs vs. OWL constructs

<table>
<thead>
<tr>
<th>OWL constructor</th>
<th>DL constructor</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObjectIntersectionOf</td>
<td>$C_1 \sqcap \cdots \sqcap C_n$</td>
<td>Human \sqcap Male</td>
</tr>
<tr>
<td>ObjectUnionOf</td>
<td>$C_1 \sqcup \cdots \sqcup C_n$</td>
<td>Doctor \sqcup Lawyer</td>
</tr>
<tr>
<td>ObjectComplementOf</td>
<td>$\neg C$</td>
<td>\text{~Male}</td>
</tr>
<tr>
<td>ObjectOneOf</td>
<td>${a_1 \sqcup \cdots \sqcup a_n}$</td>
<td>${\text{john}} \sqcup {\text{mary}}$</td>
</tr>
<tr>
<td>ObjectAllValuesFrom</td>
<td>$\forall P.C$</td>
<td>\forall hasChild.Doctor</td>
</tr>
<tr>
<td>ObjectSomeValuesFrom</td>
<td>$\exists P.C$</td>
<td>\exists hasChild.Lawyer</td>
</tr>
<tr>
<td>ObjectMaxCardinality</td>
<td>$(\leq n \ P)$</td>
<td>$(\leq 1 \ hasChild)$</td>
</tr>
<tr>
<td>ObjectMinCardinality</td>
<td>$(\geq n \ P)$</td>
<td>$(\geq 2 \ hasChild)$</td>
</tr>
</tbody>
</table>

Note: all constructs come also in the Data... instead of Object... variant.
/owlv/owlv.png

DL axioms vs. OWL axioms

<table>
<thead>
<tr>
<th>OWL axiom</th>
<th>DL syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubClassOf</td>
<td>C₁ ⊑ C₂</td>
<td>Human ⊑ Animal ⊑ Biped</td>
</tr>
<tr>
<td>EquivalentClasses</td>
<td>C₁ ≡ C₂</td>
<td>Man ≡ Human ⊕ Male</td>
</tr>
<tr>
<td>DisjointClasses</td>
<td>C₁ ⊓ ¬C₂</td>
<td>Man ⊓ ¬Female</td>
</tr>
<tr>
<td>Sameindividual</td>
<td>{o₁} ≡ {o₂}</td>
<td>(presBush) ≡ {G.W.Bush}</td>
</tr>
<tr>
<td>DifferentIndividuals</td>
<td>{o₁} ⊑ ¬{o₂}</td>
<td>(john) ⊑ ¬(peter)</td>
</tr>
<tr>
<td>SubObjectProperty</td>
<td>P₁ ⊑ P₂</td>
<td>hasDaughter ⊑ hasChild</td>
</tr>
<tr>
<td>EquivalentObjectProperties</td>
<td>P₁ ≡ P₂</td>
<td>hasCost ≡ hasPrice</td>
</tr>
<tr>
<td>InverseObjectProperties</td>
<td>P₁ = P₂</td>
<td>hasChild = hasParent</td>
</tr>
<tr>
<td>TransitiveObjectProperty</td>
<td>P⁺ ⊆ P</td>
<td>ancestor ⊆ ancestor</td>
</tr>
<tr>
<td>FunctionalObjectProperty</td>
<td>⊤ ⊑ (≤ 1 P)</td>
<td>⊤ ⊑ (≤ 1 hasFather)</td>
</tr>
</tbody>
</table>

Encoding UML Class Diagrams in DLs

The ideas behind the encoding of a UML Class Diagram D in terms of a DL TBox T_D are quite natural:

- Each class is represented by an atomic concept.
- Each attribute is represented by a role.
- Each binary association is represented by a role.
- Each non-binary association is reified, i.e., represented as a concept connected to its components by roles.
- Each part of the diagram is encoded by suitable assertions.

We illustrate the encoding by means of an example.

DLs vs. UML Class Diagrams

There is a tight correspondence between variants of DLs and UML Class Diagrams [BCDG05].

- We can devise two transformations:
 - one that associates to each UML Class Diagram D a DL TBox T_D.
 - one that associates to each DL TBox T a UML Class Diagram D_T.

- The transformations are not model-preserving, but are based on a correspondence between instantiations of the Class Diagram and models of the associated ontology.

- The transformations are satisfiability-preserving, i.e., a class C is consistent in D iff the corresponding concept is satisfiable in T.

Encoding UML Class Diagrams in DLs – Example

![Diagram showing the encoding of UML classes into DL concepts and properties]
Encoding DL TBoxes in UML Class Diagrams

The encoding of an \mathcal{ALC} TBox T in terms of a UML Class Diagram T_D is based on the following observations:

- We can restrict the attention to \mathcal{ALC} TBoxes, that are constituted by concept inclusion assertions of a simplified form (single atomic concept on the left, and a single concept constructor on the right).
- For each such inclusion assertion, the encoding introduces a portion of UML Class Diagram, that may refer to some common classes.

Reasoning in the encoded \mathcal{ALC}-fragment is already **ExpTime-hard**.

From this, we obtain:

Theorem

Reasoning over UML Class Diagrams is **ExpTime-hard**.

Efficient reasoning on UML Class Diagrams

We are interested in using UML Class Diagrams to specify ontologies in the context of Ontology-Based Data Access.

Questions

- Which is the right combination of constructs to allow in UML Class Diagrams to be used for OBDA?
- Are there techniques for query answering in this case that can be derived from Description Logics?
- Can query answering be done efficiently in the size of the data?
- If yes, can we leverage relational database technology for query answering?

Reasoning on UML Class Diagrams using DLs

- The two encodings show that DL TBoxes and UML Class Diagrams essentially have the **same expressive power**.
- Hence, reasoning over UML Class Diagrams has the same complexity as reasoning over ontologies in expressive DLs, i.e., **ExpTime-complete**.
- The high complexity is caused by:
 - the possibility to use disjunction (covering constraints)
 - the interaction between role inclusions and functionality constraints (maximum 1 cardinality)

Without (1) and restricting (2), reasoning becomes simpler [ACK+07]:

- **NLogSpace**-complete in combined complexity
- in **LogSpace** in data complexity (see later)

Outline

1. A gentle introduction to Description Logics
2. DLs as a formal language to specify ontologies
3. Queries in Description Logics
 - Queries over Description Logics ontologies
 - Certain answers
 - Complexity of query answering
4. The **DL-Lite** family of tractable Description Logics
Queries over Description Logics ontologies

Traditionally, simple concept (or role) expressions have been considered as queries over DL ontologies.

We need more complex forms of queries, as those used in databases.

Def.: A *conjunctive query* $q(x)$ over an ontology $O = \langle T, A \rangle$ is a conjunctive query $q(x) \leftarrow \bar{y}, \text{conj}(\bar{x}, \bar{y})$ where each atom in the body $\text{conj}(\bar{x}, \bar{y})$:

- has as predicate symbol an atomic concept or role of T,
- may use variables in \bar{x} and \bar{y},
- may use constants that are individuals of A.

Note: A CQ corresponds to a select-project-join SQL query.

Certain answers to a query

Let $O = \langle T, A \rangle$ be an ontology, I an interpretation for O, and $q(x) \leftarrow \bar{y}, \text{conj}(\bar{x}, \bar{y})$ a CQ.

Def.: The *answer* to $q(x)$ over I, denoted q^I is the set of tuples \bar{c} of constants of A such that the formula $\exists \bar{y}, \text{conj}(\bar{c}, \bar{y})$ evaluates to true in I.

We are interested in finding those answers that hold in all models of an ontology.

Def.: The *certain answers* to $q(x)$ over $O = \langle T, A \rangle$, denoted $\text{cert}(q, O)$ are the tuples \bar{c} of constants of A such that $\bar{c} \in q^I$, for every model I of O.

Query answering over ontologies

Def.: Query answering over an ontology O is the problem of computing the certain answers to a query over O.

Computing certain answers is a form of *logical implication*:

$$\bar{c} \in \text{cert}(q, O) \quad \text{iff} \quad O \models q(\bar{c})$$

Note: A special case of query answering is *instance checking*: it amounts to answering the boolean query $q() \leftarrow A(c)$ (resp., $q() \leftarrow P(c_1, c_2)$) over O (in this case \bar{c} is the empty tuple).
Query answering over ontologies – Example

TBox T: \existshasFather \sqsubseteq Person

Person

ABox A: Person(john), Person(nick), Person(toni)

\begin{align*}
\text{hasFather}(\text{john}, \text{nick}) & \land \text{hasFather}(\text{john}, \text{toni}) \\
\text{hasFather}(\text{ nick}, \text{toni}) & \land \text{hasFather}(\text{nick}, \text{toni})
\end{align*}

Queries:

\begin{align*}
q_1(x, y) & \leftarrow \text{hasFather}(x, y) \\
q_2(x) & \leftarrow \exists y. \text{hasFather}(x, y) \\
q_3(x) & \leftarrow \exists y_1, y_2, y_3. \text{hasFather}(x, y_1) \land \text{hasFather}(y_1, y_2) \land \text{hasFather}(y_2, y_3) \\
q_4(x, y_3) & \leftarrow \exists y_1, y_2, y_3. \text{hasFather}(x, y_1) \land \text{hasFather}(y_1, y_2) \land \text{hasFather}(y_2, y_3)
\end{align*}

Certain answers:

\begin{align*}
\text{cert}(q_1, \langle T, A \rangle) & = \{(\text{ john}, \text{nick}), (\text{nick}, \text{toni})\} \\
\text{cert}(q_2, \langle T, A \rangle) & = \{\text{ john}, \text{nick}, \text{toni}\} \\
\text{cert}(q_3, \langle T, A \rangle) & = \{\text{ john}, \text{nick}, \text{toni}\} \\
\text{cert}(q_4, \langle T, A \rangle) & = \{}
\end{align*}

Data and combined complexity

When measuring the complexity of answering a query $q(x)$ over an ontology $O = \langle T, A \rangle$, various parameters are of importance. Depending on which parameters we consider, we get different complexity measures:

- **Data complexity**: TBox and query are considered fixed, and only the size of the ABox (i.e., the data) matters.
- **Query complexity**: TBox and ABox are considered fixed, and only the size of the query matters.
- **Schema complexity**: ABox and query are considered fixed, and only the size of the TBox (i.e., the schema) matters.
- **Combined complexity**: no parameter is considered fixed.

In the OBDA setting, the size of the data largely dominates the size of the conceptual layer (and of the query).

Data complexity is the relevant complexity measure.

Unions of conjunctive queries

We consider also unions of CQs over an ontology.

A union of conjunctive queries (UCQ) has the form:

\[
q(x) = \exists y_1, \text{conj}(x, y_1) \lor \ldots \lor \exists y_k, \text{conj}(x, y_k)
\]

where each $\exists y_i, \text{conj}(x, y_i)$ is the body of a CQ.

Example

\[
q(x) \leftarrow (\text{Manager}(x) \land \text{worksFor}(x, \text{tones})) \lor (\exists y. \text{boss}(x, y) \land \text{worksFor}(y, \text{tones}))
\]

We typically use the Datalog notation:

\[
q(x) \leftarrow \text{Manager}(x) \land \text{worksFor}(x, \text{tones}) \\
q(x) \leftarrow \exists y. \text{boss}(x, y) \land \text{worksFor}(y, \text{tones})
\]

Complexity of query answering in DLs

Answering (U)CQs over DL ontologies has been studied extensively:

- **Combined complexity**:
 - NP-complete for plain databases (i.e., with an empty TBox)
 - ExpTime-complete for ALC [CDGL98, Lut07]
 - 2ExpTime-complete for very expressive DLs (with inverse roles) [CDGL98, Lut07]

- **Data complexity**:
 - in LogSpace for plain databases
 - coNP-hard with disjunction in the TBox [DLNS94, CDGL^+06b]
 - coNP-complete for very expressive DLs [LR98, OCE06, GHLS07]

Questions

- Can we find interesting families of DLs for which the query answering problem can be solved efficiently?
- If yes, can we leverage relational database technology for query answering?
The DL-Lite family

- Is a family of DLs optimized according to the tradeoff between expressive power and data complexity of query answering.
- We present first two incomparable languages of this family, DL-Lite_\text{T} and DL-Lite_\text{R}.
- We will see that DL-Lite_\text{T} has nice computational properties:
 - \text{PTime} in the size of the TBox (schema complexity)
 - \text{LogSpace} in the size of the ABox (data complexity)
 - enjoys FOL-rewritability
- We will see that DL-Lite_\text{T} and DL-Lite_\text{R} are in some sense the maximal DLs with these nice computational properties, which are lost if the two logics are combined, and with minimal additions of constructs.
- We will see, however, that a restricted combination of DL-Lite_\text{T} and DL-Lite_\text{R} is possible, without losing the computational properties.

Hence, DL-Lite provides a positive answer to our basic questions, and sets the foundations for Ontology-Based Data Access.

DL-Lite_\text{T} ontologies

- TBox assertions:
 - Concept inclusion assertions: \(C_1 \sqsubseteq C_r \) with:
 \[
 C_1 \quad \rightarrow \quad A \mid \exists Q \\
 C_r \quad \rightarrow \quad A \mid \exists Q \mid \neg A \mid \neg \exists Q \\
 Q \quad \rightarrow \quad P \mid P^-
 \]
 - Functionality assertions: \((\text{func} \ Q)\)

- ABox assertions: \(A(c_1, c_2) \), with \(c_1, c_2 \) constants

Observations:
- Captures all the basic constructs of UML Class Diagrams and ER
- Notable exception: covering constraints in generalizations.

DL-Lite_\text{R} ontologies

- TBox assertions:
 - Concept inclusion assertions: \(C_1 \sqsubseteq C_r \) with:
 \[
 C_1 \quad \rightarrow \quad A \mid \exists Q \\
 C_r \quad \rightarrow \quad A \mid \exists Q \mid \neg A \mid \neg \exists Q \\
 Q \quad \rightarrow \quad P \mid P^-
 \]
 - Role inclusion assertions: \(Q \sqsubseteq R \) with:
 \[
 Q \quad \rightarrow \quad P \mid P^- \\
 R \quad \rightarrow \quad Q \mid \neg Q
 \]

- ABox assertions: \(A(c_1, c_2) \), with \(c_1, c_2 \) constants

Observations:
- Drops functional restrictions in favor of ISA between roles.
- Extends (the DL fragment of) the ontology language RDFS.
Semantics of DL-Lite

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic conc.</td>
<td>A</td>
<td>Doctor</td>
<td>$A^I \subseteq \Delta^I$</td>
</tr>
<tr>
<td>exist. restr.</td>
<td>$\exists Q$</td>
<td>\existschild</td>
<td>${ d \mid \exists d, (d, e) \in Q^I }$</td>
</tr>
<tr>
<td>at. conc. neg</td>
<td>$\neg A$</td>
<td>\negDoctor</td>
<td>$\Delta^I \setminus A^I$</td>
</tr>
<tr>
<td>conc. neg.</td>
<td>$\neg \exists Q$</td>
<td>\negchild</td>
<td>$\Delta^I \setminus (\exists Q)^I$</td>
</tr>
<tr>
<td>atomic role</td>
<td>P</td>
<td>child</td>
<td>$P^I \subseteq \Delta^I \times \Delta^I$</td>
</tr>
<tr>
<td>inverse role</td>
<td>P^\rightarrow</td>
<td>child$^\rightarrow$</td>
<td>${ (o, a') \mid (a', o) \in P^I }$</td>
</tr>
<tr>
<td>role negation</td>
<td>$\neg Q$</td>
<td>manages</td>
<td>$(\Delta^I \times \Delta^I)^I \setminus (Q^I)$</td>
</tr>
<tr>
<td>conc. incl.</td>
<td>$C \sqsubseteq C_r$</td>
<td>Father \sqsubseteqchild</td>
<td>$C^I \subseteq C_r^I$</td>
</tr>
<tr>
<td>role incl.</td>
<td>$Q \sqsubseteq R$</td>
<td>\existsFather \sqsubseteqchild</td>
<td>$Q^I \subseteq R^I$</td>
</tr>
<tr>
<td>funct. asser.</td>
<td>(funct Q)</td>
<td>(func succ)</td>
<td>$\forall d, e, e', (d, e) \in Q^I \land (d, e') \in Q^I \rightarrow e = e'$</td>
</tr>
<tr>
<td>mem. asser.</td>
<td>$P(c_1, c_2)$</td>
<td>$\text{child}(\text{bob}, \text{ann})$</td>
<td>$(c_1^I, c_2^I) \in P^I$</td>
</tr>
</tbody>
</table>

DL-Lite – Example

Additionally, in DL-Lite_R:
- (funct manages), (funct manages$^\rightarrow$), ...
- $\text{manages} \sqsubseteq \text{worksFor}$

Note: in DL-Lite we cannot capture:
- completeness of the hierarchy,
- number restrictions

Capturing basic ontology constructs in DL-Lite

<table>
<thead>
<tr>
<th>Constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA between classes</td>
</tr>
<tr>
<td>Disjointness between classes</td>
</tr>
<tr>
<td>Domain and range of relations</td>
</tr>
<tr>
<td>Mandatory participation</td>
</tr>
<tr>
<td>Functionality of relations (in DL-Lite_F)</td>
</tr>
<tr>
<td>ISA between relations (in DL-Lite_R)</td>
</tr>
<tr>
<td>Disjointness between relations (in DL-Lite_R)</td>
</tr>
</tbody>
</table>

Properties of DL-Lite

- The TBox may contain cyclic dependencies (which typically increase the computational complexity of reasoning).
 Example: $A \sqsubseteq \exists P$, $\exists P^- \sqsubseteq A$
- We have not included in the syntax \cap on the right hand-side of inclusion assertions, but it can trivially be added, since
 $$CI \sqsubseteq C_r \cap C_r$$ is equivalent to $$CI \sqsubseteq C_r$$
- A domain assertion on role P has the form: $\exists P \sqsubseteq A_1$
- A range assertion on role P has the form: $\exists P^\rightarrow \sqsubseteq A_2$
Properties of \(DL\)-Lite\(_F \)

\(DL\)-Lite\(_F \) does not enjoy the finite model property.

Example

TBox \(T: \)
\[
\text{Nat} \sqsubseteq \exists \text{succ} \quad \exists \text{succ}^- \sqsubseteq \text{Nat} \\
\text{Zero} \sqsubseteq \text{Nat} \land \neg \exists \text{succ}^- \\
\text{(funct succ)}
\]

ABox \(A: \)
\(\text{Zero}(0) \)

\(O = \langle T, A \rangle \) admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

What is missing in \(DL\)-Lite wrt popular data models?

Let us consider UML class diagrams that have the following features:
- functionality of associations (i.e., roles)
- inclusion (i.e., ISA) between associations
- attributes of concepts and associations, possibly functional
- covering constraints in hierarchies

What can we capture of these while maintaining FOL-rewritability?
- We can forget about covering constraints, since they make query answering coNP-hard in data complexity (see Part 3).
- Attributes of concepts are “syntactic sugar” (they could be modeled by means of roles), but their functionality is an issue.
- We could also add attributes of roles (we won’t discuss this here).
- **Functionality and role inclusions** are present separately (in \(DL\)-Lite\(_F \) and \(DL\)-Lite\(_R \)), but were not allowed to be used together.

Properties of \(DL\)-Lite\(_R \)

- The TBox may contain cyclic dependencies.
- \(DL\)-Lite\(_F \) does enjoy the finite model property. Hence, reasoning w.r.t. finite models is the same as reasoning w.r.t. arbitrary models.
- With role inclusion assertions, we can simulate **qualified existential quantification** in the rhs of an inclusion assertion \(A_1 \sqsubseteq \exists Q.A_2 \).

To do so, we introduce a new role \(Q_{A_2} \) and:
- the role inclusion assertion \(Q_{A_2} \sqsubseteq Q \)
- the concept inclusion assertions:

In this way, we can consider \(\exists Q.A \) in the right-hand side of an inclusion assertion as an abbreviation.

\(DL\)-Lite\(_A \): a DL combining \(DL\)-Lite\(_F \) and \(DL\)-Lite\(_R \)

\(DL\)-Lite\(_A \) is a Description Logic designed to capture as much features as possible of conceptual data models, while preserving nice computational properties for query answering.
- Allows for both **functionality assertions** and role inclusion assertions, but restricts in a suitable way their interaction.
- Takes into account the distinction between **objects** and **values**:
 - Objects are elements of an abstract interpretation domain.
 - Values are elements of concrete data types, such as integers, strings, ecc.
- Values are connected to objects through **attributes**, rather than roles (we consider here only concept attributes and not role attributes [CDLG\(^{06a}\)]).
- **FOL-rewritability**, and hence is LogSpace in data complexity.
Syntax of the \textit{DL-Lite}_A description language

- Concept expressions:
 \[B \rightarrow A \mid \exists Q \mid \delta(U) \]
 \[C \rightarrow T_C \mid B \mid \neg B \mid \exists Q.C \]
- Role expressions:
 \[Q \rightarrow P \mid P^- \]
 \[R \rightarrow Q \mid \neg Q \]
- Value-domain expressions: (each \(T_i \) is one of the RDF datatypes)
 \[E \rightarrow \rho(U) \]
 \[F \rightarrow T_D \mid T_1 \mid \cdots \mid T_n \]
- Attribute expressions:
 \[V \rightarrow U \mid \neg U \]

Semantics of the \textit{DL-Lite}_A constructs

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>top concept</td>
<td>(T_C)</td>
<td></td>
<td>(\Delta_C \subset \Delta)</td>
</tr>
<tr>
<td>atomic concept</td>
<td>A</td>
<td>Doctor</td>
<td>(A \subset \Delta_C)</td>
</tr>
<tr>
<td>existential restriction</td>
<td>(\exists Q)</td>
<td>(-\text{child})</td>
<td>{ (o \mid \exists \delta \cdot (o, \delta) \in Q } }</td>
</tr>
<tr>
<td>qualified exist. restriction</td>
<td>(3Q.C)</td>
<td>(-\text{child_Male})</td>
<td>{ (o \mid \exists \delta \cdot (o, \delta) \in Q \land (\delta \text{ Male}) } }</td>
</tr>
<tr>
<td>concept negation</td>
<td>(\neg B)</td>
<td>(-\text{child})</td>
<td>(\Delta_C \setminus B)</td>
</tr>
<tr>
<td>attribute domain</td>
<td>(\delta(U))</td>
<td>(\text{salary})</td>
<td>{ (o \mid \exists \delta \cdot (o, \delta) \in U } }</td>
</tr>
<tr>
<td>atomic role</td>
<td>(P)</td>
<td>child</td>
<td>(P \subset \Delta_P \setminus \Delta)</td>
</tr>
<tr>
<td>inverse role</td>
<td>(P^-)</td>
<td>(-\text{child})</td>
<td>{ (o, \delta \mid (\delta \text{ Child}, o) \in P } }</td>
</tr>
<tr>
<td>role negation</td>
<td>(\neg Q)</td>
<td>(-\text{manages})</td>
<td>(\Delta_C \setminus \Delta_Q \setminus \Delta)</td>
</tr>
<tr>
<td>top domain</td>
<td>(\delta_P)</td>
<td>object constant</td>
<td>(\text{Val}(v) \subset \Delta)</td>
</tr>
<tr>
<td>datatype</td>
<td>(T_e)</td>
<td>xsd:int</td>
<td>\text{Val}(T_e) \subset \Delta)</td>
</tr>
<tr>
<td>attribute range</td>
<td>(\rho(U))</td>
<td>(\text{salary})</td>
<td>{ (v \mid \exists \delta \cdot (v, \delta) \in U } }</td>
</tr>
<tr>
<td>atomic attribute</td>
<td>(U)</td>
<td>salary</td>
<td>(U \subset \Delta_C \setminus \Delta)</td>
</tr>
<tr>
<td>attribute negation</td>
<td>(\neg U)</td>
<td>(-\text{salary})</td>
<td>(\Delta_C \setminus \Delta_U \setminus \Delta)</td>
</tr>
<tr>
<td>object constant</td>
<td>(c)</td>
<td>john</td>
<td>(c \in \Delta)</td>
</tr>
<tr>
<td>value constant</td>
<td>(v)</td>
<td>(\text{`john'})</td>
<td>\text{Val}(v) \subset \Delta)</td>
</tr>
</tbody>
</table>

\textit{DL-Lite}_A – Objects vs. values

We make use of an alphabet \(\Gamma \) of constants, partitioned into:
- an alphabet \(\Gamma_O \) of object constants.
- an alphabet \(\Gamma_V \) of value constants, in turn partitioned into alphabets \(\Gamma_V \).

The interpretation domain \(\Delta^T \) is partitioned into:
- a domain of objects \(\Delta^T_O \)
- a domain of values \(\Delta^T_V \)

The semantics of \textit{DL-Lite}_A descriptions is determined as usual, considering the following:
- The interpretation \(C^T \) of a concept \(C \) is a subset of \(\Delta^T_O \).
- The interpretation \(R^T \) of a role \(R \) is a subset of \(\Delta^T_O \times \Delta^T_O \).
- The interpretation \(\text{val}(v) \) of each value constant \(v \) in \(\Gamma_V \) and RDF datatype \(T_i \) is given a priori (e.g., all strings for \text{xsd:string}).
- The interpretation \(V^T \) of an attribute \(V \) is a subset of \(\Delta^T_O \times \Delta^T_V \).

\textit{DL-Lite}_A assertions

TBox assertions can have the following forms:
- \(B \sqsubseteq C \) concept inclusion assertion
- \(Q \sqsubseteq R \) role inclusion assertion
- \(E \sqsubseteq F \) value-domain inclusion assertion
- \(U \sqsubseteq V \) attribute inclusion assertion
- \(\text{funct} \ Q \) role functionality assertion
- \(\text{funct} \ U \) attribute functionality assertion

ABox assertions: \(A(c), \ P(c, c'), \ U(c, d) \), where \(c, c' \) are object constants and \(d \) is a value constant.
Chap. 2: Description Logics and the DL-Lite family

Semantics of the $DL\text{-}Lite_A$ assertions

<table>
<thead>
<tr>
<th>Assertion</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. incl.</td>
<td>$B \sqsubseteq C$</td>
<td>Father \sqsubseteq Child</td>
<td>$B^2 \sqsubseteq C^2$</td>
</tr>
<tr>
<td>role incl.</td>
<td>$Q \sqsubseteq R$</td>
<td>father \sqsubseteq anc</td>
<td>$Q^2 \sqsubseteq R^2$</td>
</tr>
<tr>
<td>v.dom. incl.</td>
<td>$E \sqsubseteq F$</td>
<td>(age) \sqsubseteq xsd: long</td>
<td>$E^2 \sqsubseteq F^2$</td>
</tr>
<tr>
<td>attr. incl.</td>
<td>$U \sqsubseteq V$</td>
<td>offPhone \sqsubseteq phone</td>
<td>$U^2 \sqsubseteq V^2$</td>
</tr>
<tr>
<td>role funct.</td>
<td>$(\text{func} \ P)$</td>
<td>(func father)</td>
<td>$\forall X, Y, Z : (X, Y, Z) \in Q^2 \land (X, Y, Z) \in Q^2 \rightarrow X = Y$</td>
</tr>
<tr>
<td>att. funct.</td>
<td>$(\text{func} \ U)$</td>
<td>(func ssn)</td>
<td>$\forall X, Y, Z : (X, Y, Z) \in Q^2 \land (X, Y, Z) \in Q^2 \rightarrow X = Y$</td>
</tr>
<tr>
<td>mem. asser.</td>
<td>$\Delta(c)$</td>
<td>Father(bob)</td>
<td>$c \in A^2$</td>
</tr>
<tr>
<td>mem. asser.</td>
<td>$P(c_1, c_2)$</td>
<td>child(bob, ann)</td>
<td>$(c_1, c_2) \in P^2$</td>
</tr>
<tr>
<td>mem. asser.</td>
<td>$U(c, d)$</td>
<td>phone(bob, '2345')</td>
<td>$(c, d) \in U^2$</td>
</tr>
</tbody>
</table>

Note: in $DL\text{-}Lite_A$ we still cannot capture:
- completeness of the hierarchy
- number restrictions

Restriction on $TBox$ assertions in $DL\text{-}Lite_A$ ontologies

We will see that, to ensure FOL-rewritability, we have to impose a **restriction** on the use of functionality and role/attribute inclusions.

Restriction on $DL\text{-}Lite_A$ TBoxes

- **No functional role or attribute can be specialized** by using it in the right-hand side of a role or attribute inclusion assertion.

Formally:
- If $\exists \text{P.} \text{C}$ or $\exists \text{P}^\bot \cdot \text{C}$ appears in T,
 then $(\text{func} \text{P})$ and $(\text{func} \text{P}^\bot)$ are **not in T**.
- If $Q \sqsubseteq P$ or $Q \sqsubseteq P^\bot$ is in T,
 then $(\text{func} \text{P})$ and $(\text{func} \text{P}^\bot)$ are **not in T**.
- If $U_1 \sqsubseteq U_2$ is in T,
 then $(\text{func} \text{U}_2)$ is **not in T**.

Complexity results for $DL\text{-}Lite$

- We have seen that $DL\text{-}Lite_A$ can capture the essential features of prominent conceptual modeling formalisms.
- In the following, we will analyze reasoning in $DL\text{-}Lite$, and establish the following characterization of its computational properties:
 - Ontology satisfiability is **polynomial** in the size of TBox and ABox.
 - Query answering is:
 - PTime in the size of the TBox.
 - LogSpace in the size of the ABox, and FOL-rewritable, which means that we can leverage for it relational database technology.
- We will also see that $DL\text{-}Lite$ is essentially the maximal DL enjoying these nice computational properties.

From (1), (2), and (3) we get the following claim:

$DL\text{-}Lite$ is the representation formalism that is best suited to underly Ontology-Based Data Management systems.
Chapter III

Linking ontologies to data

Outline

- The impedance mismatch problem
- Ontology-Based Data Access Systems
- Query answering in Ontology-Based Data Access Systems

Managing ABoxes

In the traditional DL setting, it is assumed that the data is maintained in the ABox of the ontology:

- The ABox is perfectly compatible with the TBox:
 - the vocabulary of concepts, roles, and attributes is the one used in the TBox.
 - The ABox “stores” abstract objects, and these objects and their properties are those returned by queries over the ontology.

- There may be different ways to manage the ABox from a physical point of view:
 - Description Logics reasoners maintain the ABox as main-memory data structures.
 - When an ABox becomes large, managing it in secondary storage may be required, but this is again handled directly by the reasoner.
Data in external sources

There are several situations where the assumptions of having the data in an ABox managed directly by the ontology system (e.g., a Description Logics reasoner) is not feasible or realistic:

- When the ABox is very large, so that it requires relational database technology.
- When we have no direct control over the data since it belongs to some external organization, which controls the access to it.
- When multiple data sources need to be accessed, such as in Information Integration.

We would like to deal with such a situation by keeping the data in the external (relational) storage, and performing query answering by leveraging the capabilities of the relational engine.

Solution to the impedance mismatch problem

We need to define a mapping language that allows for specifying how to transform data into abstract objects:

- Each mapping assertion maps:
 - a query that retrieves values from a data source to . . .
 - a set of atoms specified over the ontology.
- Basic idea: use Skolem functions in the atoms over the ontology to “generate” the objects from the data values.
- Semantics of mappings:
 - Objects are denoted by terms (of exactly one level of nesting).
 - Different terms denote different objects (i.e., we make the unique name assumption on terms).

Impedance mismatch – Example

Actual data is stored in a DB:
- An Employee is identified by her SSN.
- A Project is identified by its name.

D₁[SSN: String, PrName: String]
Employees and Projects they work for
D₂[Code: String, Salary: Int]
Employee’s Code with salary
D₃[Code: String, SSN: String]
Employee’s Code with SSN

Intuitively:
- An employee should be created from her SSN: pers(SSN)
- A project should be created from its Name: proj(PrName)
Creating object identifiers

We need to associate the data in the tables objects in the ontology.

- We introduce an alphabet Λ of function symbols, each with an associated arity.
- To denote values, we use value constants from an alphabet Γ_V.
- To denote objects, we use object terms instead of object constants.

An object term has the form $f(d_1, \ldots, d_n)$, with $f \in \Lambda$, and each d_i a value constant in Γ_V.

Example

- If a person is identified by its SSN, we can introduce a function symbol $\text{pers}/1$. If VRD56B25 is a SSN, then $\text{pers}(\text{VRD56B25})$ denotes a person.
- If a person is identified by its name and dateOfBirth, we can introduce a function symbol $\text{pers}/2$. Then $\text{pers}(\text{Vardi, 25/2/56})$ denotes a person.

Mapping assertions – Example

- $D_1[\text{SSN: String, PrName: String}]$
 - Employees and Projects they work for

- $D_2[\text{Code: String, Salary: Int}]$
 - Employee’s Code with salary

- $D_3[\text{Code: String, SSN: String}]$
 - Employee’s Code with SSN

m_1: SELECT SSN, PrName
FROM D_1
\sim Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m_2: SELECT SSN, Salary
FROM D_2, D_3
\sim Employee(pers(SSN)),
salary(pers(SSN), Salary)
Ontology-Based Data Access System

The mapping assertions are a crucial part of an Ontology-Based Data Access System.

Def.: Ontology-Based Data Access System

is a triple $O = (T, M, D)$, where

- T is a TBox.
- D is a relational database.
- M is a set of mapping assertions between T and D.

We need to specify the syntax and semantics of mapping assertions.

Semantics of mappings

To define the semantics of an OBDA system $O = (T, M, D)$, we first need to define the semantics of mapping assertions.

Def.: Satisfaction of a mapping assertion with respect to a database

An interpretation I satisfies a mapping assertion $\Phi(\vec{x}) \leadsto \Psi(\vec{t}, \vec{y})$ in M with respect to a database D, if for each tuple of values $\vec{t} \in \text{Eval}(\Phi, D)$, and for each ground atom in $\Psi[\vec{x}/\vec{t}]$, we have that:

- if the ground atom is $A(s)$, then $s \in A_I$.
- if the ground atom is $P(s_1, s_2)$, then $(s_1^I, s_2^I) \in P_I$.

Intuitively, I satisfies $\Phi \leadsto \Psi$ w.r.t. D if all facts obtained by evaluating Φ over D and then propagating the answers to Ψ, hold in I.

Note: $\text{Eval}(\Phi, D)$ denotes the result of evaluating Φ over the database D.

$\Psi[\vec{x}/\vec{t}]$ denotes Ψ where each x_i has been substituted with t_i.

Mapping assertions

A mapping assertion in M has the form

$$\Phi(\vec{x}) \leadsto \Psi(\vec{t}, \vec{y})$$

where

- Φ is an arbitrary SQL query of arity $n > 0$ over D;
- Ψ is a conjunctive query over T of arity $n' > 0$ **without** non-distinguished variables;
- \vec{x}, \vec{y} are variables, with $\vec{y} \subseteq \vec{x}$;
- \vec{t} are variable terms of the form $f(\vec{x})$, with $f \in \Lambda$ and $\vec{x} \subseteq \vec{z}$.

Note: we could consider also mapping assertions between the datatypes of the database and those of the ontology.

Semantics of an OBDA system

Def.: Model of an OBDA system

An interpretation I is a model of $O = (T, M, D)$ if:

- I is a model of T;
- I satisfies M w.r.t. D, i.e., I satisfies every assertion in M w.r.t. D.

An OBDA system O is **satisfiable** if it admits at least one model.
Outline

- The impedance mismatch problem
- Ontology-Based Data Access Systems
- Query answering in Ontology-Based Data Access Systems

Splitting of mappings

A mapping assertion $\Phi \leadsto \Psi$, where the TBox query Ψ is constituted by the atoms X_1, \ldots, X_k, can be split into several mapping assertions:

$$\Phi \leadsto X_1 \quad \cdots \quad \Phi \leadsto X_k$$

This is possible, since Ψ does not contain non-distinguished variables.

Example

m_1: SELECT SSN, PrName FROM D₁ \leadsto Employee(pers(SSN)), Project(proj(PrName)), projectName(proj(PrName), PrName), worksFor(pers(SSN), proj(PrName))

is split into

m'_1: SELECT SSN, PrName FROM D₁ \leadsto Employee(pers(SSN))
m'_2: SELECT SSN, PrName FROM D₁ \leadsto Project(proj(PrName))
m'_3: SELECT SSN, PrName FROM D₁ \leadsto projectName(proj(PrName), PrName)
m'_4: SELECT SSN, PrName FROM D₁ \leadsto worksFor(pers(SSN), proj(PrName))

Answering queries over an OBDA system

In an OBDA system $\mathcal{O} = \langle T, M, D \rangle$:

- Queries are posed over the TBox T.
- The data needed to answer queries is stored in the database D.
- The mapping M is used to bridge the gap between T and D.

Two approaches to exploit the mapping:

- bottom-up approach: simpler, but less efficient
- top-down approach: more sophisticated, but also more efficient

Note: Both approaches require to first split the TBox queries in the mapping assertions into their constituent atoms.

Bottom-up approach to query answering

Consists in a straightforward application of the mappings:

- Propagate the data from D through M, materializing an ABox $\mathcal{A}_{M,D}$ (the constants in such an ABox are values and object terms).
- Apply to $\mathcal{A}_{M,D}$ and to the TBox T, the satisfiability and query answering algorithms developed for DL-Lite$_A$.

This approach has several drawbacks (hence is only theoretical):

- The technique is no more LogSpace in the data, since the ABox $\mathcal{A}_{M,D}$ to materialize is in general polynomial in the size of the data.
- $\mathcal{A}_{M,D}$ may be very large, and thus it may be infeasible to actually materialize it.
- Freshness of $\mathcal{A}_{M,D}$ with respect to the underlying data source(s) may be an issue, and one would need to propagate source updates (cf. Data Warehousing).
Unfolding

To unfold a query \(q_{pr} \) with respect to a set of mapping assertions:

1. For each non-split mapping assertion \(\Phi_i(\vec{z}) \sim \Psi_i(\vec{f}, \vec{y}) \):
 - Introduce a view symbol \(\text{Aux}_i \) of arity equal to that of \(\Phi_i \).
 - Add a view definition \(\text{Aux}_i(\vec{f}, \vec{y}) \sim \Phi_i(\vec{z}) \).

2. For each split version \(\Phi_i(\vec{z}) \sim X_i(\vec{f}, \vec{y}) \) of a mapping assertion, introduce a clause \(X_i(\vec{f}, \vec{y}) \sim \text{Aux}_i(\vec{f}) \).

3. Obtain from \(q_{pr} \) all possible ways queries \(q_{aux} \) defined over the view symbols \(\text{Aux}_i \) as follows:
 - Find a most general unifier \(\vartheta \) that unifies each atom \(X(\vec{z}) \) in the body of \(q_{pr} \) with the head of a clause \(X(\vec{f}, \vec{y}) \sim \text{Aux}_i(\vec{f}) \).
 - Substitute each atom \(X(\vec{z}) \) with \(\vartheta(\text{Aux}_i(\vec{f})) \), i.e., with the body the unified clause to which the unifier \(\vartheta \) is applied.

The unfolded query \(q_{aux} \) is the union of all queries \(q_{aux} \) together with the view definitions for the predicates \(\text{Aux}_i \) appearing in \(q_{aux} \).

Unfolding – Example

m1: SELECT SSN, PrName
FROM D1

For each (split) mapping assertion, we introduce a clause:

- \(\text{Employee(\text{pers}(SSN))} \sim \text{Aux}_1(\text{SSN}, \text{PrName}) \)
- \(\text{Project(\text{proj}(PrName))} \sim \text{Aux}_2(\text{PrName}) \)
- \(\text{worksFor(\text{pers}(SSN), \text{proj}(PrName))} \sim \text{Aux}_3(\text{SSN}, \text{PrName}) \)
- \(\text{Employee(\text{pers}(SSN))} \sim \text{Aux}_2(\text{SSN}, \text{Salary}) \)
- \(\text{salary(\text{pers}(SSN), Salary)} \sim \text{Aux}_3(\text{SSN}, \text{Salary}) \)

We define a view \(\text{Aux}_1 \) for the source query of each mapping \(m_1 \).
Exponential blowup in the unfolding

When there are multiple mapping assertions for each atom, the unfolded query may be exponential in the original one.

Consider a query: \(q(y) \leftarrow A_1(y), A_2(y), \ldots, A_n(y) \)
and the mappings:
\[
\begin{align*}
 m_1^i &: \Phi^1_i(x) \leadsto A_i(f(x)) \quad \text{(for } i \in \{1, \ldots, n\}) \\
 m_2^j &: \Phi^2_j(x) \leadsto A_i(f(x))
\end{align*}
\]

We add the view definitions: \(\text{Aux}_1^i(x) \leftarrow \Phi^1_i(x) \) and introduce the clauses: \(A_i(f(x)) \leftarrow \text{Aux}_j^i(x) \) (for \(i \in \{1, \ldots, n\}, j \in \{1, 2\} \)).

There is a single unifier, namely \(\nu(x) = f(x) \), but each atom \(A_i(y) \) in the query unifies with the head of two clauses.

Hence, we obtain one unfolded query:
\[
q(f(x)) \leftarrow \text{Aux}_{1}^{i_1}(x), \text{Aux}_{2}^{i_1}(x), \ldots, \text{Aux}_{n}^{i_1}(x)
\]
for each possible combination of \(i_1 \in \{1, 2\} \), for \(i \in \{1, \ldots, n\} \).

Hence, we obtain \(2^n \) unfolded queries.

Implementation of top-down approach to query answering

To implement the top-down approach, we need to generate an SQL query.

We can follow different strategies:

1. Substitute each view predicate in the unfolded queries with the corresponding SQL query over the source:
 - joins are performed on the DB attributes;
 - does not generate doubly nested queries;
 - the number of unfolded queries may be exponential.

2. Construct for each atom in the original query a new view. This view takes the union of all SQL queries corresponding to the view predicates, and constructs also the Skolem terms:
 - avoids exponential blow-up of the resulting query, since the union (of the queries coming from multiple mappings) is done before the joins;
 - joins are performed on Skolem terms;
 - generates doubly nested queries.

Which method is better, depends on various parameters. Experiments have shown that (1) behaves better in most cases.

Computational complexity of query answering

From the top-down approach to query answering, and the complexity results for DL-Lite, we obtain the following result.

Theorem

Query answering in a DL-Lite OBDM system \(O = \langle T, M, D \rangle \) is

- \(\textbf{NP-complete} \) in the size of the query.
- \(\textbf{PTime} \) in the size of the TBox \(T \) and the mappings \(M \).
- \(\textbf{LogSpace} \) in the size of the database \(D \).

Note: The LogSpace result is a consequence of the fact that query answering in such a setting can be reduced to evaluating an SQL query over the relational database.
TBox reasoning

TBox & ABox reasoning

Complexity of reasoning in Description Logics

Reasoning in DL-Lite,∈R

References

Outline

1 TBox reasoning
2 TBox & ABox reasoning
3 Complexity of reasoning in Description Logics
4 Reasoning in DL-Lite,∈R
5 References

Outline

1 TBox reasoning
2 TBox & ABox reasoning
3 Complexity of reasoning in Description Logics
4 Reasoning in DL-Lite,∈R
5 References

Remark on used notation

In the following,

- We use “TBox” to denote either a DL-Lite,∈R or a DL-Lite,∈F TBox.
- Q, possibly with subscript, denotes a basic role, i.e.,
 \[Q \rightarrow P | P^\perp \]
- C, possibly with subscript, denotes a general concept, i.e.,
 \[C \rightarrow A | \neg A | \exists Q | \neg \exists Q \]
 where A is an atomic concept and P is an atomic role.
- R, possibly with subscript, denotes a general role, i.e.,
 \[R \rightarrow Q | \neg Q \]

TBox Reasoning services

- **Concept Satisfiability:** C is satisfiable wrt T, if there is a model I of T such that C ⊨ T ̸|= C ≡ ⊥
- **Subsumption:** C₁ is subsumed by C₂ wrt T, if for every model I of T we have C₁ ⊆ C₂, i.e., T |= C₁ ⊑ C₂.
- **Equivalence:** C₁ and C₂ are equivalent wrt T if for every model I of T we have C₁ ≡ C₂, i.e., T |= C₁ ≡ C₂.
- **Disjointness:** C₁ and C₂ are disjoint wrt T if for every model I of T we have C₁ ⊓ C₂ = ∅, i.e., T |= C₁ ⊓ C₂ ≡ ⊥.
- **Functionality implication:** A functionality assertion (funct Q) is logically implied by T if for every model I of T, we have that (o₁, o₁) ∈ Q I and (o₁, o₂) ∈ Q I implies o₁ = o₂, i.e., T |= (funct Q).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and disjointness.
From TBox reasoning to ontology (un)satisfiability

Basic reasoning service:
- **Ontology satisfiability**: Verify whether an ontology \(\mathcal{O} \) is satisfiable, i.e., whether \(\mathcal{O} \) admits at least one model.

In the following, we show how to reduce TBox reasoning to ontology unsatisfiability:
- We show how to reduce TBox reasoning services to concept/role subsumption.
- We provide reductions from concept/role subsumption to ontology unsatisfiability.

Theorem

\[T \models (\text{funct } Q) \] iff either \((\text{funct } Q) \in T\) (only for DL-Lite\(\mathcal{F} \) ontologies), or \(T \models Q \sqsubseteq \neg Q\).

Proof (sketch).

\(\Leftarrow\) The case in which \((\text{funct } Q) \in T\) is trivial. Instead, if \(T \models Q \sqsubseteq \neg Q\), then \(Q^T = \emptyset\) and hence \(I \models (\text{funct } Q)\), for every model \(I\) of \(T\).

\(\Rightarrow\) When neither \((\text{funct } Q) \in T\) nor \(T \models Q \sqsubseteq \neg Q\), we can construct a model of \(T\) that is not a model of \((\text{funct } Q)\).

Concept/role satisfiability, equivalence, and disjointness

Theorem

- \(C\) is unsatisfiable wrt \(T\) iff \(T \models C \sqsubseteq \neg C\).
- \(T \models C_1 \equiv C_2\) iff \(T \models C_1 \sqsubseteq C_2\) and \(T \models C_2 \sqsubseteq C_1\).
- \(C_1\) and \(C_2\) are disjoint iff \(T \models C_1 \sqsubseteq \neg C_2\).

Proof (sketch).

\(\Leftarrow\) “\(\Leftarrow\)” if \(T \models C \sqsubseteq \neg C\), then \(C^T \subseteq \Delta^T \setminus C^T\), for every model \(I = (\Delta^T, \cdot^T)\) of \(T\); but this holds iff \(C^T = \emptyset\).

\(\Rightarrow\) “\(\Rightarrow\)” if \(C\) is unsatisfiable, then \(C^T = \emptyset\), for every model \(I\) of \(T\). Therefore \(C^T \subseteq (\neg C)^T\).

- Trivial.
- Trivial.

Analogous reductions for role satisfiability, equivalence and disjointness.

From concept subsumption to ontology unsatisfiability

Theorem

\(T \models C_1 \sqsubseteq C_2\) iff the ontology \(O_{C_1 \sqsubseteq C_2} = (T \cup \{\hat{A} \sqsubseteq C_1, \hat{A} \sqsubseteq \neg C_2\}, \{\hat{A}(c)\})\) is unsatisfiable, where \(\hat{A}\) is an atomic concept not in \(T\), and \(c\) is a constant.

Intuitively, \(C_1\) is subsumed by \(C_2\) iff the smallest ontology containing \(T\) and implying both \(C_1(c)\) and \(\neg C_2(c)\) is unsatisfiable.

Proof (sketch).

\(\Leftarrow\) Let \(O_{C_1 \sqsubseteq C_2}\) be unsatisfiable, and suppose that \(T \nvdash C_1 \sqsubseteq C_2\). Then there exists a model \(I\) of \(T\) such that \(C_1^I \nsubseteq C_2^I\). Hence \(C_1^T \setminus C_2^T \neq \emptyset\). We can extend \(I\) to a model of \(O_{C_1 \sqsubseteq C_2}\) by taking \(c' = o\), for some \(o \in C_1^T \setminus C_2^T\), and \(\hat{A}^T = \{c'\}\). This contradicts \(O_{C_1 \sqsubseteq C_2}\) being unsatisfiable.

\(\Rightarrow\) Let \(T \models C_1 \sqsubseteq C_2\), and suppose that \(O_{C_1 \sqsubseteq C_2}\) is satisfiable. Then there exists a model \(I\) of \(O_{C_1 \sqsubseteq C_2}\). Then \(I \models T\), and \(I \models C_1(c)\) and \(I \models \neg C_2(c)\), i.e., \(I \nvdash C_1 \sqsubseteq C_2\). This contradicts \(T \models C_1 \sqsubseteq C_2\).
From role subsumption to ont. unsatisfiability for DL-Lite$_R$

Theorem

Let \mathcal{T} be a DL-Lite$_R$ TBox and R_1, R_2 two general roles. Then $\mathcal{T} \models R_1 \sqsubseteq R_2$ iff the ontology

$$\mathcal{O}_{R_1 \sqsubseteq R_2} = \langle T \cup \{ P \sqsubseteq R_1, P \sqsubseteq \neg R_2 \}, \{ P(c_1, c_2) \} \rangle$$

is unsatisfiable, where P is an atomic role not in T, and c_1, c_2 are two constants.

Intuitively, R_1 is subsumed by R_2 iff the smallest ontology containing T and implying both $R_1(c_1,c_2)$ and $\neg R_2(c_1,c_2)$ is unsatisfiable.

Proof (sketch).

Analogous to the one for concept subsumption.

Notice that $\mathcal{O}_{R_1 \sqsubseteq R_2}$ is inherently a DL-Lite$_R$ ontology.

Summary

- The results above tell us that we can support TBox reasoning services by relying on the ontology (un)satisfiability service.
- Ontology satisfiability is a form of reasoning over both the TBox and the ABox of the ontology.
- In the following, we first consider other TBox & ABox reasoning services, in particular query answering, and then turn back to ontology satisfiability.

From role subsumption to ont. unsatisfiability for DL-Lite$_F$

Theorem

Let \mathcal{T} be a DL-Lite$_F$ TBox, and Q_1, Q_2 two basic roles such that $Q_1 \neq Q_2$. Then,

1. $\mathcal{T} \models Q_1 \sqsubseteq Q_2$ iff Q_1 is unsatisfiable wrt \mathcal{T}, which can again be reduced to ontology unsatisfiability.
2. $\mathcal{T} \models \neg Q_1 \sqsubseteq Q_2$ iff \mathcal{T} is unsatisfiable.
3. $\mathcal{T} \models Q_1 \sqsubseteq \neg Q_2$ iff either $\exists Q_1$ or $\exists Q_1^-$ is unsatisfiable wrt \mathcal{T}, which can again be reduced to ontology unsatisfiability.
4. $\mathcal{T} \models Q_1 \sqsubseteq \neg Q_2$ iff either $\exists Q_1$ and $\exists Q_2$ are disjoint, or $\exists Q_1^-$ and $\exists Q_2^-$ are disjoint, iff either $\mathcal{T} \models \exists Q_1 \sqsubseteq \exists Q_2$, or $\mathcal{T} \models \exists Q_1^- \sqsubseteq \exists Q_2^-$, and then turn back to ontology satisfiability.

Notice that an inclusion of the form $\neg Q_1 \sqsubseteq Q_2$ is equivalent to $Q_2 \sqsubseteq Q_1$, and therefore is considered in the first item.

Outline

- TBox reasoning
- TBox & ABox reasoning
 - TBox & ABox Reasoning services
 - Query answering
 - Query answering in DL-Lite$_R$
 - Query answering in DL-Lite$_F$
 - Ontology satisfiability
 - Ontology satisfiability in DL-Lite$_R$
 - Ontology satisfiability in DL-Lite$_F$
- Complexity of reasoning in Description Logics
- Reasoning in DL-Lite$_A$
- References
TBox and ABox reasoning services

- **Ontology Satisfiability**: Verify whether an ontology \(O \) is satisfiable, i.e., whether \(O \) admits at least one model.

- **Concept Instance Checking**: Verify whether an individual \(c \) is an instance of a concept \(C \) in an ontology \(O \), i.e., whether \(O \models C(c) \).

- **Role Instance Checking**: Verify whether a pair \((c_1, c_2)\) of individuals is an instance of a role \(Q \) in an ontology \(O \), i.e., whether \(O \models Q(c_1, c_2) \).

- **Query Answering**: Given a query \(q \) over an ontology \(O \), find all tuples \(\vec{c} \) of constants such that \(O \models q(\vec{c}) \).

From instance checking to ontology unsatisfiability

Theorem

Let \(O = (T, A) \) be a **DL-Lite** ontology, \(C \) a **DL-Lite** concept, and \(P \) an atomic role. Then:

- \(O \models C(c) \) iff \(O_{C(c)} = (T \cup \{ A \sqsubseteq \neg C \}, A \cup \{ \neg A(c) \}) \) is unsatisfiable, where \(A \) is an atomic concept not in \(O \).

- \(O \models \neg P(c_1, c_2) \) iff \(O_{\neg P(c_1, c_2)} = (T \cup \{ P \sqsubseteq \neg P \}, A \cup \{ P(c_1, c_2) \}) \) is unsatisfiable, where \(P \) is an atomic role not in \(O \).

Theorem

Let \(O = (T, A) \) be a **DL-Lite** ontology and \(P \) an atomic role. Then \(O \models P(c_1, c_2) \) iff \(O_{P(c_1, c_2)} = (T \cup \{ P \sqsubseteq P \}, A \cup \{ P(c_1, c_2) \}) \) is unsatisfiable, where \(P \) is an atomic role not in \(O \).

Query answering and instance checking

For atomic concepts and roles, **instance checking** is a special case of **query answering**, in which the query is **boolean** and constituted by a single atom in the body.

- \(O \models A(c) \) iff \(q(\cdot) \leftarrow A(c) \) evaluated over \(O \) is true.

- \(O \models P(c_1, c_2) \) iff \(q(\cdot) \leftarrow P(c_1, c_2) \) evaluated over \(O \) is true.

Certain answers

We recall that

Query answering over an ontology \(O = (T, A) \) is a form of [logical implication](https://en.wikipedia.org/wiki/Logical_implication):

\[
\text{cert}(q, O) = \{ \vec{c} \mid \vec{c} \in q^\sharp, \text{ for every model } I \text{ of } O \}
\]

Note: We have assumed that the answer \(q^\sharp \) to a query \(q \) over an interpretation \(I \) is constituted by a set of tuples of **constants** of \(A \), rather than objects in \(I^\sharp \).
When studying the complexity of query answering, we need to consider the associated decision problem:

Def.: Recognition problem for query answering

Given an ontology O, a query q over O, and a tuple \vec{c} of constants, check whether $\vec{c} \in \text{cert}(q, O)$.

We consider a setting where the size of the data largely dominates the size of the conceptual layer, hence, we concentrate on efficiency in the size of the data.

We look at data complexity of query answering, i.e., complexity of the recognition problem computed w.r.t. the size of the ABox only.

Inference in query answering

\[q \rightarrow T \rightarrow A \rightarrow \text{Logical inference} \rightarrow \text{cert}(q, \langle T, A \rangle) \]

To be able to deal with data efficiently, we need to separate the contribution of A from the contribution of q and T.

\sim Query answering by **query rewriting**.

Basic questions associated to query answering

1. For which ontology languages can we answer queries over an ontology efficiently?
2. How complex becomes query answering over an ontology when we consider more expressive ontology languages?

Query rewriting

Query answering can always be thought as done in two phases:

- **Perfect rewriting**: produce from q and the TBox T a new query $r_{q,T}$ (called the perfect rewriting of q w.r.t. T).
- **Query evaluation**: evaluate $r_{q,T}$ over the ABox A seen as a complete database (and without considering the TBox T).

\sim Produces $\text{cert}(q, \langle T, A \rangle)$.

Note: The “always” holds if we pose no restriction on the language in which to express the rewriting $r_{q,T}$.
Let Q be a query language and L be an ontology language.

Def.: Q-rewritability

For an ontology language L, query answering is **Q-rewritable** if for every TBox T of L and for every query q, the perfect reformulation $r_{q,T}$ of q w.r.t. T can be expressed in the query language Q.

Notice that the complexity of computing $r_{q,T}$ or the size of $r_{q,T}$ do **not** affect data complexity.

Hence, Q-rewritability is tightly related to **data complexity**, i.e.:

- complexity of computing $\text{cert}(q, (T, A))$ measured in the size of the ABox A only,
- which corresponds to the **complexity of evaluating** $r_{q,T}$ over A.

Q-rewritability for DL-Lite

- We now study Q-rewritability of query answering over DL-Lite ontologies.

In particular we will show that both DL-Lite$_R$ and DL-Lite$_F$ enjoy FOL-rewritability of conjunctive query answering.

Query answering over unsatisfiable ontologies

- In the case in which an ontology is unsatisfiable, according to the “ex falso quod libet” principle, reasoning is trivialized.
- In particular, query answering is meaningless, since every tuple is in the answer to every query.
- We are not interested in encoding meaningless query answering into the perfect reformulation of the input query. Therefore, before query answering, we will always check ontology satisfiability to single out meaningful cases.
- Thus, in the following, we focus on query answering over **satisfiable ontologies**.
- We first consider **satisfiable DL-Lite$_R$ ontologies**.

Q-rewritability: interesting cases

Consider an ontology language L that enjoys Q-rewritability, for a query language Q:

- When Q is FOL (i.e., the language enjoys **FOL-rewritability**) \sim query evaluation can be done in SQL, i.e., via an RDBMS. *(Note: FOL is in LogSpace).*
- When Q is an NLogSpace-hard language \sim query evaluation requires (at least) linear recursion.
- When Q is a PTime-hard language \sim query evaluation requires (at least) recursion (e.g., Datalog).
- When Q is a coNP-hard language \sim query evaluation requires (at least) power of Disjunctive Datalog.
Remark

We call **positive inclusions (PIs)** assertions of the form
\[Cl \subseteq A \cup Q \]
\[Q_1 \subseteq Q_2 \]

We call **negative inclusions (NIs)** assertions of the form
\[Cl \subseteq \neg A \cup \neg Q \]
\[Q_1 \subseteq \neg Q_2 \]

Query reformulation

Consider the query
\[q(x) \leftarrow \text{Professor}(x) \]

Intuition: Use the PIs as basic rewriting rules:

- AssistantProf \subseteq Professor
- as a logic rule: \(\text{Professor}(z) \leftarrow \text{AssistantProf}(z) \)

Basic rewriting step: when an atom in the query unifies with the head of the rule, substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom Professor\((x) \). Towards the computation of the perfect reformulation, we add to the input query above, the query
\[q(x) \leftarrow \text{AssistantProf}(x) \]

Query answering in \(DL\text{-Lite}_R \)

Given a CQ \(q \) and a satisfiable ontology \(O = (T,A) \), we compute \(ext{cert}(q,O) \) as follows:

1. Using \(T \), **reformulate** \(q \) as a union \(r_q,T \) of CQs.
2. Evaluate \(r_q,T \) directly over \(A \) managed in secondary storage via a RDBMS.

Correctness of this procedure shows FOL-rewritability of query answering in \(DL\text{-Lite}_R \).

\(\neg q \) Query answering over \(DL\text{-Lite}_R \) ontologies can be done using RDMBS technology.

Query reformulation (cont’d)

Consider the query
\[q(x) \leftarrow \text{teaches}(x,y), \text{Course}(y) \]

and the PI
\[\text{teaches} \subseteq \text{Course} \]

as a logic rule:
\[\text{Course}(z_2) \leftarrow \text{teaches}(z_1,z_2) \]

The PI applies to the atom \(\text{Course}(y) \), and we add to the perfect reformulation the query
\[q(x) \leftarrow \text{teaches}(x,y), \text{teaches}(z_1,y) \]

Consider now the query
\[q(x) \leftarrow \text{teaches}(x,y) \]

and the PI
\[\text{Professor} \subseteq \text{teaches} \]

as a logic rule:
\[\text{teaches}(z,f(z)) \leftarrow \text{Professor}(z) \]

The PI applies to the atom \(\text{teaches}(x,y) \), and we add to the perfect reformulation the query
\[q(x) \leftarrow \text{Professor}(x) \]
Query reformulation – Constants

Conversely, for the query

\[q(x) \leftarrow \text{teaches}(x, \text{kbdb}) \]

and the same PI as before

\[\text{Professor} \sqsubseteq \exists \text{teaches} \]

as a logic rule:

\[\text{teaches}(z, f(z)) \leftarrow \text{Professor}(z) \]

\[\text{teaches}(x, \text{kbdb}) \]

does not unify with \[\text{teaches}(z, f(z)) \]

The same holds for the following query, where \(y \) is distinguished, since unifying \(f(z) \) with \(y \) would correspond to returning a skolem term as answer to the query:

\[q(x, y) \leftarrow \text{teaches}(x, y) \]

In this case, the PI does not apply to the atom \(\text{teaches}(x, \text{kbdb}) \).

The same holds for the following query, where \(y \) is distinguished, since unifying \(f(z) \) with \(y \) would correspond to returning a skolem term as answer to the query:

\[q(x, y) \leftarrow \text{teaches}(x, y) \]

Consider now the query

\[q(x) \leftarrow \text{teaches}(x, y), \text{teaches}(z, y) \]

and the PI

\[\text{Professor} \sqsubseteq \exists \text{teaches} \]

as a logic rule:

\[\text{teaches}(z, f(z)) \leftarrow \text{Professor}(z) \]

This PI does not apply to \(\text{teaches}(x, y) \) or \(\text{teaches}(z, y) \), since \(y \) is in join, and we would introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms \(\text{teaches}(x, y) \) and \(\text{teaches}(z, y) \). This rewriting step is called reduce, and produces the query

\[q(x) \leftarrow \text{teaches}(x, y) \]

Now, we can apply the PI above, and add to the reformulation the query

\[q(x) \leftarrow \text{Professor}(x) \]

Query reformulation – Join variables

An analogous behavior to the one with constants and with distinguished variables holds when the atom contains join variables that would have to be unified with skolem terms.

Consider the query

\[q(x) \leftarrow \text{teaches}(x, y), \text{Course}(y) \]

and the PI

\[\text{Professor} \sqsubseteq \exists \text{teaches} \]

as a logic rule:

\[\text{teaches}(z, f(z)) \leftarrow \text{Professor}(z) \]

The PI above does not apply to the atom \(\text{teaches}(x, y) \).

Query reformulation – Summary

Reformulate the CQ \(q \) into a set of queries: apply to \(q \) and the computed queries in all possible ways the PIs in the TBox \(T \):

\[
\begin{align*}
A_1 \sqsubseteq A_2 & \quad \ldots \quad A_2(x) \ldots \sim \ldots \quad A_1(x) \ldots \\
\exists P \sqsubseteq A & \quad \ldots \quad A(x) \ldots \sim \ldots \quad P(x, _ \ldots) \\
\exists P' \sqsubseteq A & \quad \ldots \quad A(x) \ldots \sim \ldots \quad P'(x, _ \ldots) \\
A \sqsubseteq \exists P & \quad \ldots \quad P(x, _ \ldots) \sim \ldots \quad A(x) \\
A \sqsubseteq \exists P' & \quad \ldots \quad P'(x, _ \ldots) \sim \ldots \quad A(x) \\
\exists P_1 \sqsubseteq \exists P_2 & \quad \ldots \quad P_2(x, _ \ldots) \sim \ldots \quad P_1(x, _ \ldots) \\
\ldots & \\
R_1 \sqsubseteq P_2 & \quad \ldots \quad P_2(x, y) \ldots \sim \ldots \quad P_1(x, y) \ldots
\end{align*}
\]

(_ denotes an unbound variable, i.e., a variable that appears only once.)

This corresponds to exploiting ISAs, role typing, and mandatory participation to obtain new queries that could contribute to the answer.

Unifying atoms can make rules applicable that were not so before.

The UCQ resulting from this process is the perfect reformulation \(r_q, T \).
Query reformulation algorithm

Algorithm \textit{PerfectRef}(q, T_P)

\textbf{Input:} conjunctive query \(q\), set of DL-Lite\(_R\) PIs \(T_P\)

\textbf{Output:} union of conjunctive queries \(PR\)

\(PR := \{q\};\)

\textbf{repeat}

\(PR' := PR;\)

\textbf{for each} \(q \in PR'\) \textbf{do}

\textbf{for each} \(g \in q\) \textbf{do}

\textbf{for each} \(P_i\) in \(T_P\) \textbf{do}

\textbf{if} \(P_i\) is applicable to \(g\)

\textbf{then} \(PR := PR \cup \{q[g/g_i]\}\)

\textbf{for each} \(g_1, g_2\) in \(q\)

\textbf{if} \(g_1\) and \(g_2\) unify

\textbf{then} \(PR := PR \cup \{\tau(\text{reduce}(q, g_1, g_2))\}\)

\textbf{until} \(PR' = PR;\)

\textbf{return} \(PR\).

\textbf{Notice that NIs do not play any role in the reformulation of the query.}

Query evaluation

Let \(r_{q,T}\) be the UCQ returned by the algorithm \textit{PerfectRef}(q, T).

- We denote by \(\text{SQL}(r_{q,T})\) the encoding of \(r_{q,T}\) into an SQL query over \(DB(A)\).

- We indicate with \(\text{Eval}(\text{SQL}(r_{q,T}), DB(A))\) the evaluation of \(\text{SQL}(r_{q,T})\) over \(DB(A)\).

ABox storage

ABox \(A\) stored as a relational database in a standard RDBMS as follows:

- For each atomic concept \(A\) used in the ABox, define a \emph{unary relational table} \(\text{tab}_{A}\) and populate \(\text{tab}_{A}\) with each \((c)\) such that \(A(c) \in A\).

- For each atomic role \(P\) used in the ABox, define a \emph{binary relational table} \(\text{tab}_{P}\) and populate \(\text{tab}_{P}\) with each \((c_1, c_2)\) such that \(P(c_1, c_2) \in A\).

We denote with \(DB(A)\) the database obtained as above.

Theorem

Let \(T\) be a DL-Lite\(_R\) TBox, \(T_P\) the set of PIs in \(T\), \(q\) a CQ over \(T\), and let \(r_{q,T} = \text{PerfectRef}(q, T_P)\). Then, for each ABox \(A\) such that \(\langle T, A\rangle\) is satisfiable, we have that \(\text{cert}(q, \langle T, A\rangle) = \text{Eval}(\text{SQL}(r_{q,T}), DB(A))\).

In other words, query answering over a satisfiable DL-Lite\(_R\) ontology is FOL-rewritable.

Notice that we did not mention NIs of \(T\) in the theorem above. Indeed, when the ontology is satisfiable, we can ignore NIs and answer queries as if NIs were not specified in \(T\).
Query answering in DL-Lite$_R$ – Example

TBox: \DiamondProfessor \sqsubseteq teaches \BoxCourse

Query: $q(x) \leftarrow$ teaches(x, y), Course(y)

Perfect Reformulation: $q(x) \leftarrow$ teaches(x, y), Course(y)
$q(x) \leftarrow$ teaches(x, y), teaches(\neg y)
$q(x) \leftarrow$ teaches(x, \bot)
$q(x) \leftarrow$ Professor(x)

ABox: teaches(john,kadb)
Professor(mary)

It is easy to see that $Eval_{SQL}(q(x), DB(A))$ in this case produces as answer {john, mary}.

Query answering in DL-Lite$_F$

If we limit our attention to PIs, we can say that DL-Lite$_F$ ontologies are DL-Lite$_R$ ontologies of a special kind (i.e., with no PIs between roles).

As for NIs and functionality assertions, it is possible to prove that they can be disregarded in query answering over satisfiable DL-Lite$_F$ ontologies.

From this the following result follows immediately.

Theorem

Let T be a DL-Lite$_F$ TBox, T_P the set of PIs in T, q a CQ over T, and let $r_q.T = \text{PerfectRef}(q, T_P)$. Then, for each ABox \mathcal{A} such that (T, \mathcal{A}) is satisfiable, we have that $\text{cert}(q, (T, \mathcal{A})) = Eval_{SQL}(r_q.T, DB(\mathcal{A}))$.

In other words, query answering over a satisfiable DL-Lite$_F$ ontology is FOL-rewritable.

Satisfiability of ontologies with only PIs

Let us now consider the problem of establishing whether an ontology is satisfiable.

Remember that solving this problem allow us to solve TBox reasoning and identify cases in which query answering is meaningless.

A first notable result tells us that PIs alone cannot cause an ontology to become unsatisfiable.

Theorem

Let $\mathcal{O} = (T, \mathcal{A})$ be either a DL-Lite$_R$ or a DL-Lite$_F$ ontology, where T contains only PIs. Then, \mathcal{O} is satisfiable.
Satisfiability of DL-Lite_R ontologies – Example

TBox \(T \):
\[\text{Professor} \sqsubseteq \text{Professor} \]

ABox \(A \):
\[\text{teaches}(\text{john, kbdb}) \]
\[\text{Student}(\text{john}) \]

In what follows we provide a mechanism to establish, in an efficient way, whether a DL-Lite_R ontology is satisfiable.

Query \(q_N() \):
\[q_N() \leftarrow \text{Student}(x), \text{Professor}(x) \]

Perfect Reformulation:
\[q_N() \leftarrow \text{Student}(x), \text{Professor}(x) \]
\[q_N() \leftarrow \text{Student}(x), \text{Professor}(x) \]

ABox \(A \):
\[\text{teaches}(\text{john, kbdb}) \]
\[\text{Student}(\text{john}) \]

It is easy to see that \(\langle T_P, A \rangle \models q_N() \), and that the ontology \(\langle T_P \cup \{ \text{Professor} \sqsubseteq \text{Student} \}, A \rangle \) is unsatisfiable.

Checking satisfiability of DL-Lite_R ontologies

Satisfiability of a DL-Lite_R ontology \(O = \langle T, A \rangle \) is reduced to evaluating a FOL-query (in fact a UCQ) over \(DB(A) \).

We proceed as follows: Let \(T_P \) the set of PIs in \(T \).

- For each NI \(N \) between concepts (resp. roles) in \(T \), we ask \(\langle T_P, A \rangle \models q_N() \) whether there exists some individual (resp. pair of individuals) that contradicts \(N \), i.e., we construct over \(\langle T_P, A \rangle \) a boolean CQ \(q_N() \) such that

 \[\langle T_P, A \rangle \models q_N() \iff \langle T_P \cup \{ N \}, A \rangle \text{ is unsatisfiable} \]

- We exploit PerfectRef to verify whether \(\langle T_P, A \rangle \models q_N() \), i.e., we compute \(\text{PerfectRef}(q_N, T_P) \), and evaluate it (in fact, its SQL encoding) over \(DB(A) \).

Queries for NIs

For each NI \(N \) in \(T \) we compute a boolean CQ \(q_N() \) according to the following rules:

\begin{align*}
A_1 \sqsubseteq \neg A_2 & \quad \sim \quad q_N() \leftarrow A_1(x), A_2(x) \\
\exists P \sqsubseteq \neg A \text{ or } A \sqsubseteq \neg \exists P & \quad \sim \quad q_N() \leftarrow P(x, y), A(x) \\
\exists P \sqsubseteq \neg A \text{ or } A \sqsubseteq \neg \exists P & \quad \sim \quad q_N() \leftarrow P(y, x), A(x) \\
\neg P_1 \sqsubseteq \neg P_2 & \quad \sim \quad q_N() \leftarrow P_1(x, y), P_2(y, z) \\
\neg P_1 \sqsubseteq \neg P_2 & \quad \sim \quad q_N() \leftarrow P_2(x, z) \\
\neg P_1 \sqsubseteq \neg P_2 & \quad \sim \quad q_N() \leftarrow P_1(x, y), P_2(y, z) \\
\neg P_1 \sqsubseteq \neg P_2 & \quad \sim \quad q_N() \leftarrow P_2(x, z) \\
P_1 \sqsubseteq \neg P_2 \text{ or } P_1 \sqsubseteq \neg -P_2 & \quad \sim \quad q_N() \leftarrow P_1(x, y), P_2(y, z) \\
P_1 \sqsubseteq \neg P_2 \text{ or } P_1 \sqsubseteq \neg -P_2 & \quad \sim \quad q_N() \leftarrow P_2(x, z) \\
P_1 \sqsubseteq \neg P_2 \text{ or } P_1 \sqsubseteq \neg -P_2 & \quad \sim \quad q_N() \leftarrow P_1(x, y), P_2(y, z)
\end{align*}
Lemma (Separation for DL-Lite\textsubscript{R})

Let $O = (T, A)$ be a DL-Lite\textsubscript{R} ontology, and T_P the set of PIs in T. Then, O is unsatisfiable iff there exists a NI $N \in T$ such that $(T_P, A) \models_\text{FOL} q_N()$.

The lemma relies on the following properties:
- NIs do not interact with each other.
- Interaction between NIs and PIs can be managed through PerfectRef.

Notably, each NI can be processed individually.

DL-Lite\textsubscript{F} ontologies

Unsatisfiability in DL-Lite\textsubscript{F} ontologies can be caused by NIs or by functionality assertions.

Example

TBox T:

- Professor \sqsubseteq Student
- teaches \sqsubseteq Professor

ABox A:

- Student(john)
- teaches(john, kbdb)
- teaches(michael, kbdb)

In what follows we extend to DL-Lite\textsubscript{F} ontologies the technique for DL-Lite\textsubscript{R} ontology satisfiability given before.

DL-Lite\textsubscript{F}: FOL-rewritability of satisfiability

From the previous lemma and the theorem on query answering for satisfiable DL-Lite\textsubscript{R} ontologies, we get the following result.

Theorem

Let $O = (T, A)$ be a DL-Lite\textsubscript{R} ontology, and T_P the set of PIs in T. Then, O is unsatisfiable iff there exists a NI $N \in T$ such that $\text{Eval}(\text{SQL}^\text{FOL}(q_N, T_P)), DB(A))$ returns true.

In other words, satisfiability of a DL-Lite\textsubscript{R} ontology can be reduced to FOL-query evaluation.

Checking satisfiability of DL-Lite\textsubscript{F} ontologies

Satisfiability of a DL-Lite\textsubscript{F} ontology $O = (T, A)$ is reduced to evaluating a FOL-query over $DB(A)$.

We deal with NIs exactly as done in DL-Lite\textsubscript{R} ontologies (indeed, limited to NIs, DL-Lite\textsubscript{F} ontologies are DL-Lite\textsubscript{R} ontologies of a special kind).

To deal with **functionality assertions**, we proceed as follows:

- For each functionality assertion $F \in T$, we ask if there exist two pairs of individuals in A that contradict F, i.e., we pose over A a boolean FOL query $q_F()$ such that

 $A \models q_F()$ iff $(\{F\}, A)$ is unsatisfiable.

- To verify if $A \models q_F()$, we evaluate SQL(q_F) over $DB(A)$.
Queries for functionality assertions

For each functionality assertion F in T we compute a boolean FOL query $q_F()$ according to the following rules:

\[
\begin{align*}
\text{funct } P & \sim q_F() \leftarrow P(x,y), P(x,z), y \neq z \\
\text{funct } P^{-} & \sim q_F() \leftarrow P(x,y), P(z,y), x \neq z
\end{align*}
\]

Example

Functionality F: \(\text{funct teaches}^{-} \)

Query q_F: \(q_F() \leftarrow \text{teaches}(x,y), \text{teaches}(z,y), x \neq z \)

ABox A: \(\text{teaches(john,} \text{kbdb)} \\
\text{teaches(michael,} \text{kbdb)} \)

It is easy to see that $A \models q_F()$, and that \((\{\text{funct teaches}^{-}\}, A) \), is unsatisfiable.

DL-Lite$_F$: FOL-rewritability of satisfiability

From the previous lemma and the theorem on query answering for satisfiable DL-Lite$_F$ ontologies, we get the following result.

Theorem

Let $O = (T, A)$ be a DL-Lite$_F$ ontology, and T_P the set of PIs in T. Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI $N \in T$ such that $\text{Eval} \text{(PerfectRef}(q_N, T_P))$, $DB(A)$ returns true.

(b) There exists a functionality assertion $F \in T$ such that $\text{Eval} \text{(}q_F(), \text{DB}(A))$ returns true.

In other words, satisfiability of a DL-Lite$_F$ ontology can be reduced to FOL-query evaluation.

DL-Lite$_F$: From satisfiability to query answering

Lemma (Separation for DL-Lite$_F$)

Let $O = (T, A)$ be a DL-Lite$_F$ ontology, and T_P the set of PIs in T. Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI $N \in T$ such that $\langle T_P, A \rangle \models q_N()$.

(b) There exists a functionality assertion $F \in T$ such that $A \models q_F()$.

(a) relies on the properties that NIs do not interact with each other, and interaction between NIs and PIs can be managed through PerfectRef.

(b) exploits the property that NIs and PIs do not interact with functionalities: indeed, no functionality assertions are contradicted in a DL-Lite$_F$ ontology O, beyond those explicitly contradicted by the ABox.

Notably, the lemma asserts that to check ontology satisfiability, each NI and each functionality assertion can be processed individually.

Outline

- TBox reasoning
- TBox & ABox reasoning
- Complexity of reasoning in DL-Lite
 - Complexity of reasoning in DL-Lite
 - Data complexity of query answering in DLs beyond DL-Lite
 - $NLOgSPACE$-hard DLs
 - $PTIME$-hard DLs
 - coNP-hard DLs
- Reasoning in DL-Lite$_A$
- References
Complexity of query answering over satisfiable ontologies

Theorem

Query answering over both DL-Lite$_R^R$ and DL-Lite$_F^R$ ontologies is

- NP-complete in the size of query and ontology (combined comp.).
- PTime in the size of the ontology.
- LogSpace in the size of the ABox (data complexity).

Proof (sketch).

- **Guess** the derivation of one of the CQs of the perfect reformulation, and an assignment to its existential variables. Checking the derivation and evaluating the guessed CQ over the ABox is then polynomial in combined complexity. NP-hardness follows from combined complexity of evaluating CQs over a database.
- The number of CQs in the perfect reformulation is polynomial in the size of the TBox, and we can compute them in PTime.
- Is the data complexity of evaluating FOL queries over a DB.

Complexity of TBox reasoning

Theorem

TBox reasoning over both DL-Lite$_R^R$ and DL-Lite$_F^R$ ontologies is PTime in the size of the TBox (schema complexity).

Proof (sketch).

Follows from the previous theorem, and from the reduction of TBox reasoning to ontology satisfiability. Indeed, the size of the ontology constructed in the reduction is polynomial in the size of the input TBox.

Complexity of ontology satisfiability

Theorem

Checking satisfiability of both DL-Lite$_R^R$ and DL-Lite$_F^R$ ontologies is

- PTime in the size of the ontology (combined complexity).
- LogSpace in the size of the ABox (data complexity).

Proof (sketch).

Follows directly from the algorithm for ontology satisfiability and the complexity of query answering over satisfiable ontologies.

Beyond DL-Lite

Can we further extend these results to more expressive ontology languages?

Essentially NO!

(unless we take particular care)
Beyond DL-Lite

We now consider DL languages that allow for constructs not present in DL-Lite or for combinations of constructs that are not legal in DL-Lite.

We recall here syntax and semantics of constructs used in what follows.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>conjunction</td>
<td>$C_1 \sqcap C_2$</td>
<td>Doctor \sqcap Male</td>
<td>$C_1^2 \cap C_2^2$</td>
</tr>
<tr>
<td>disjunction</td>
<td>$C_1 \sqcup C_2$</td>
<td>Doctor \sqcup Lawyer</td>
<td>$C_1^2 \cup C_2^2$</td>
</tr>
<tr>
<td>qual. exist. restr.</td>
<td>$\exists Q.C$</td>
<td>\existschild.Male</td>
<td>${ a \mid \exists b, (a, b) \in Q^2 \land b \in C^2 }$</td>
</tr>
<tr>
<td>qual. univ. restr.</td>
<td>$\forall Q.C$</td>
<td>\forallchild.Male</td>
<td>${ a \mid \forall b, (a, b) \in Q^2 \rightarrow b \in C^2 }$</td>
</tr>
</tbody>
</table>

Observations

- **DL-Lite-family** is FOL-rewritable, hence LogSpace – holds also with n-ary relations \sim_D DLR-Lite and DLR-Lite$_R$.
- RDF$_S$ is a subset of DL-Lite$_R$ \sim_D is FOL-rewritable, hence LogSpace.
- Horn-SHIQ [HMS05] is PTime-hard even for instance checking (line 11).
- DLP [GHVD03] is PTime-hard (line 6)
- \mathcal{EL} [BBL05] is PTime-hard (line 6).

Summary of results on data complexity

<table>
<thead>
<tr>
<th>CI</th>
<th>Cr</th>
<th>\mathcal{F}</th>
<th>\mathcal{R}</th>
<th>Data complexity of query answering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DL-Lite$_F$</td>
<td>\exists</td>
<td>\neg</td>
<td>in LogSpace</td>
</tr>
<tr>
<td>2</td>
<td>DL-Lite$_R$</td>
<td>\sim</td>
<td>\neg</td>
<td>in LogSpace</td>
</tr>
<tr>
<td>3</td>
<td>$A \mid \exists P.A$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>4</td>
<td>$A \mid \forall P.A$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>5</td>
<td>$A \mid \exists P.A \sqcap A_1 \sqcap A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>6</td>
<td>$A \mid \exists P.A \sqcup A_1 \sqcup A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>7</td>
<td>$A \mid \exists P.A \sqcap A_1 \sqcap A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>8</td>
<td>$A \mid \exists P.A \sqcup A_1 \sqcup A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>9</td>
<td>$A \mid \exists P.A \sqcap A_1 \sqcap A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>10</td>
<td>$A \mid \exists P.A \sqcup A_1 \sqcup A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>11</td>
<td>$A \mid \exists P.A \sqcap A_1 \sqcap A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>12</td>
<td>$A \mid \exists P.A \sqcup A_1 \sqcup A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>13</td>
<td>$A \mid \exists P.A \sqcap A_1 \sqcap A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>14</td>
<td>$A \mid \exists P.A \sqcup A_1 \sqcup A_2$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
</tbody>
</table>

All NLSpace-hard and PTime hardness results hold already for atomic queries.

Qualified existential quantification in the lhs of inclusions

Adding **qualified existential on the lhs** of inclusions makes instance checking (and hence query answering) NLSpace-hard:

<table>
<thead>
<tr>
<th>CI</th>
<th>Cr</th>
<th>\mathcal{F}</th>
<th>\mathcal{R}</th>
<th>Data complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$A \mid \exists P.A$</td>
<td>A</td>
<td>\neg</td>
<td>\neg</td>
</tr>
</tbody>
</table>

Hardness proof is by a reduction from reachability in directed graphs:

- **TBox** T: a single inclusion assertion $\exists P.A \subseteq A$
- **ABox** A: encodes graph using P and asserts $A(d)$

Result:

$\langle T, A \rangle \models A(s)$ iff d is reachable from s in the graph.
NLogSpace-hard cases

Instance checking (and hence query answering) is NLogSpace-hard in data complexity for:

<table>
<thead>
<tr>
<th>Cl</th>
<th>Cr</th>
<th>F</th>
<th>R</th>
<th>Data complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$A \models \exists P.A$</td>
<td>A</td>
<td>s</td>
<td>NLogSpace-hard</td>
</tr>
</tbody>
</table>

By reduction from reachability in directed graphs.

| 4 | A | $A \models \forall P.A$ | $-| -$ | NLogSpace-hard |

Follows from 3 by replacing $\exists P.A_1 \subseteq A_2$ with $A_1 \subseteq \forall P'.A_2$, and by replacing each occurrence of P^{-} with P', for a new role P'.

| 5 | A | $A \models \exists P.A$ | \forall | $-$ | NLogSpace-hard |

Proved by simulating in the reduction $\exists P.A_1 \subseteq A_2$ via $A_1 \subseteq \exists P'.A_2$ and (func t P^{-}), and by replacing again each occurrence of P^{-} with P', for a new role P'.

Reduction from Path System Accessibility

Given an instance $PS = (N, E, S, t)$, we construct

- TBox T consisting of the inclusion assertions

 $\exists P_1 A \subseteq B_1$

 $\exists P_2 A \subseteq B_2$

- ABox A, encoding the accessibility relation using P_1, P_2, and P_3, and asserting $\exists A(s)$ for each source node $s \in S$.

\[
 \begin{align*}
 e_1 &= \{n, \ldots\} \\
 e_2 &= \{n, s_1, s_2\} \\
 e_3 &= \{n, \ldots\}
 \end{align*}
\]

Result:

$\models (T, A) = A(t) \iff t$ is accessible in PS.

Path System Accessibility

Instance of Path System Accessibility: $PS = (N, E, S, t)$ with

- N a set of nodes
- $E \subseteq N \times N \times N$ an accessibility relation
- $S \subseteq N$ a set of source nodes
- $t \in N$ a terminal node

Accessibility of nodes is defined inductively:

- each $n \in S$ is accessible
- if $(n, n_1, n_2) \in E$ and n_1, n_2 are accessible, then also n is accessible

Given PS, checking whether t is accessible, is PTime-complete.

coNP-hard cases

Are obtained when we can use in the query two concepts that cover another concept. This forces reasoning by cases on the data.

Query answering is coNP-hard in data complexity for:

<table>
<thead>
<tr>
<th>Cl</th>
<th>Cr</th>
<th>F</th>
<th>R</th>
<th>Data complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>$A \models \neg A$</td>
<td>A</td>
<td>$-</td>
<td>-$</td>
</tr>
<tr>
<td>12</td>
<td>$A \models A \sqcap A_2$</td>
<td>A</td>
<td>$-</td>
<td>-$</td>
</tr>
<tr>
<td>13</td>
<td>$A \models \forall P.A$</td>
<td>A</td>
<td>$-</td>
<td>-$</td>
</tr>
</tbody>
</table>

All three cases are proved by adapting the proof of coNP-hardness of instance checking for ALE by [DLNS94].
2+2-SAT: satisfiability of a 2+2-CNF formula, i.e., a CNF formula where each clause has exactly 2 positive and 2 negative literals.

Example: \(\varphi = c_1 \land c_2 \land c_3 \) with
\[
\begin{align*}
 c_1 &= v_1 \lor v_2 \lor \neg v_3 \lor \neg v_4 \\
 c_2 &= \neg v_1 \lor \neg v_4 \\
 c_3 &= \neg v_3 \lor \neg v_4
\end{align*}
\]

2+2-SAT is NP-complete [DLNS94].

Reduction from 2+2-SAT (cont’d)

Lemma
\[
\langle T, A_\varphi \rangle \not\models q() \iff \varphi \text{ is satisfiable.}
\]

Proof (sketch).

Assume \(\langle T, A_\varphi \rangle \not\models q() \), then there is a model \(I \) of \(\langle T, A_\varphi \rangle \) s.t. \(I \not\models q() \). We define a truth assignment \(\alpha_T \) by setting \(\alpha_T(v_i) = \text{true} \) iff \(v_i^T \in T \). Notice that, since \(L \subseteq T \cup F \), if \(v_i^T \notin T \), then \(v_i^T \in F \).

It is easy to see that, since \(q() \) asks for a false clause and \(I \not\models q() \), for each clause \(c_j \), one of the literals in \(c_j \) evaluates to \text{true} in \(\alpha_T \).

\(\because \) From a truth assignment \(\alpha \) that satisfies \(\varphi \), we construct an interpretation \(I_\alpha \) with \(\Delta_I = \{ c_1, \ldots, c_k, v_1, \ldots, v_n, t, f \} \) and:
\[
\begin{align*}
 c_j^I &= c_j, \\
 v_i^I &= \alpha(v_i), \\
 \text{true}^I &= t, \\
 \text{false}^I &= f
\end{align*}
\]

Thus, \(I_\alpha \) is a model of \(\langle T, A_\varphi \rangle \) and that \(I_\alpha \not\models q() \).

Explain the complexity of reasoning in Description Logics (DLs).

2+2-CNF formula \(\varphi = c_1 \land \cdots \land c_k \) over variables \(v_1, \ldots, v_n \), \text{true}, \text{false}

- **Ontology** is over concepts \(L, T, F \), roles \(P_1, P_2, N_1, N_2 \) and individuals \(v_1, \ldots, v_n \) being \text{true}, \text{false}, \text{c_1}, \ldots, \text{c_k}
- **ABox** \(A_\varphi \) constructed from \(\varphi \):
 - for each propositional variable \(v_i \): \(L(v_i) \)
 - for each clause \(c_j \): \(P_i(v_j, v_{j2}), N_i(v_j, F_{j3}), N_2(c_j, v_{j4}) \)
 - \(T(\text{true}), F(\text{false}) \)

Note: the TBox \(T \) and the query \(q() \) do not depend on \(\varphi \), hence this reduction works for data complexity.

Outline

- TBox reasoning
- TBox & ABox reasoning
- Complexity of reasoning in Description Logics
- Reasoning in DL-Lite\(A\)
 - Combining functionality and role inclusions
 - Reasoning in \(\text{DL-Lite}\(A\)\)

References
Combining functionalities and role inclusions

We have seen till now that:

- By including in DL-Lite both functionality of roles and qualified existential quantification (i.e., \(\exists P. A \)), query answering becomes \(\text{NLogSpace} \)-hard (and \(\text{PTIME} \)-hard with also inverse roles) in data complexity (see Part 3).
- Qualified existential quantification can be simulated by using role inclusion assertions (see Part 2).
- When the data complexity of query answering is \(\text{NLogSpace} \) or above, the DL does not enjoy FOL-rewritability.

As a consequence of these results, we get:

To preserve FOL-rewritability, we need to restrict the interaction of functionality and role inclusions.

Let us analyze on an example the effect of an unrestricted interaction.

Interaction between functionalities and role inclusions

\(\exists \) Note: The number of unification steps above depends on the data. Hence this kind of deduction cannot be mimicked by a FOL (or SQL) query, since it requires a form of recursion. As a consequence, we get:

Combining functionality and role inclusions is problematic.

It breaks separability, i.e., functionality assertions may force existentially quantified objects to be unified with existing objects.

\(\exists \) Note: the problems are caused by the interaction among:

- an inclusion \(P \sqsubseteq S \) between roles,
- a functionality assertion (\textit{funct} \(S \)) on the super-role, and
- a cycle of concept inclusion assertions \(A \sqsubseteq \exists P \) and \(\exists P^- \sqsubseteq A \).

Since we do not want to limit cycles of ISA, we pose suitable restrictions on the combination of functionality and role inclusions.

Combining functionalities and role inclusions – Example

TBox: \[
A \sqsubseteq \exists P \\
\exists P^- \sqsubseteq A \\
(\text{funct} \ S) \\
\]
ABox: \[
A(c_1), A \sqsubseteq \exists P \quad \exists P^- \sqsubseteq A \\
\]
\[
A(c_1), x \quad P(c_1, x), P \sqsubseteq S \quad A(c_1) \quad x = c_2 \\
S(c_1, x), S(c_1, c_2), A(c_2) \\
A(c_2), A \sqsubseteq \exists P \\
\]

Hence, we get:

- If we add \(B(c_n) \) and \(B \sqsubseteq \neg A \), the ontology becomes inconsistent.
- Similarly, the answer to the following query over \((T, A) \) is true:

\[
q() \leftarrow A(z_1), S(z_1, z_2), S(z_2, z_3), \ldots, S(z_{n-1}, z_n), A(z_n) \\
\]

Complexity of DL-Lite with funct. and role inclusions

Let DL-Lite\(_{FR} \) be the DL that is the union of DL-Lite\(_{F} \) and DL-Lite\(_{S} \), i.e., the DL-Lite logic that allows for using both role functionality and role inclusions without any restrictions.

\textbf{Theorem [ACKZ209]}

For DL-Lite\(_{FR} \) ontologies:
- Checking satisfiability of the ontology is \(\text{ExpTime-complete} \) in the size of the ontology (combined complexity).
- TBox reasoning is \(\text{ExpTime-complete} \) in the size of the ABox (data complexity).
- Query answering is \(\text{NP-complete} \) in the size of the query and the ontology (comb. com.).
- \(\text{ExpTime-complete} \) in the size of the ontology.
- \(\text{PTime-complete} \) in the size of the ABox (data complexity).
Restriction on TBox assertions in DL-Lite$_A$ ontologies

To ensure FOL-rewritability, in DL-Lite$_A$ we have imposed a restriction on the use of functionality and role/attribute inclusions.

Restriction on DL-Lite$_A$ TBoxes

No functional role or attribute can be specialized by using it in the right-hand side of a role or attribute inclusion assertion.

Since qualified existentials in the right-hand side of concept inclusions are encoded using role inclusions, this restriction affects also qualified existentials.

Formally:
- If $\exists P.C$ or $\exists P^- . C$ appears in T, then $(\text{funct } P)$ and $(\text{funct } P^-)$ are not in T.
- If $Q \subseteq P$ or $Q \subseteq P^-$ is in T, then $(\text{funct } P)$ and $(\text{funct } P^-)$ are not in T.
- If $U_1 \subseteq U_2$ is in T, then $(\text{funct } U_2)$ is not in T.

Ontology satisfiability in DL-Lite$_A$

Due to the separation property, we can associate
- to each NI N a boolean CQ $q_N()$, and
- to each functionality assertion F a boolean FOL query $q_F()$

and check satisfiability of O by suitably evaluating $q_N()$ and $q_F()$.

Theorem

Let $O = \langle T, A \rangle$ be a DL-Lite$_A$ ontology, and T_p, the set of PIs in O. Then, O is unsatisfiable if one of the following condition holds:

- There exists a NI N in T such that $\text{Eval(SQL(PerfectRef(q_N,T_p)),DB(A))}$ returns true.
- There exists a functionality assertion $F \in T$ such that $\text{Eval(SQL(q_F),DB(A))}$ returns true.

Reasoning in DL-Lite$_A$ – Separation

It is possible to show that, by virtue of the restriction on the use of role inclusion and functionality assertions, all nice properties of DL-Lite$_R$ and DL-Lite$_F$ continue to hold also for DL-Lite$_A$.

In particular, w.r.t. satisfiability of a DL-Lite$_A$ ontology O, we have:

- NIs do not interact with each other.
- NIs and PIs do not interact with functionality assertions.

We obtain that for DL-Lite$_A$ a separation result holds:

- Each NI and each functionality can be checked independently from the others.
- A functionality assertion is contradicted in an ontology $O = \langle T, A \rangle$ only if it is explicitly contradicted by its ABox A.

Query answering in DL-Lite$_A$

- Queries over DL-Lite$_A$ ontologies are analogous to those over DL-Lite$_R$ and DL-Lite$_F$ ontologies, except that they can also make use of attribute and domain atoms.
- Exploiting the previous result, the query answering algorithm of DL-Lite$_R$ can be easily extended to deal with DL-Lite$_A$ ontologies:
 - Assertions involving attribute domain and range can be dealt with as for role domain and range assertions.
 - $\exists Q.C$ in the right hand-side of concept inclusion assertions can be eliminated by making use of role inclusion assertions.
 - Disjointness of roles and attributes can be checked similarly as for disjointness of concepts, and does not interact further with the other assertions.
Complexity of reasoning in DL-Lite$_A$

As for ontology satisfiability, DL-Lite$_A$ maintains the nice computational properties of DL-Lite$_E$ and DL-Lite$_F$ also w.r.t. query answering. Hence, we get the same characterization of computational complexity.

Theorem [PLC+08, ACKZ09]

For DL-Lite$_A$ ontologies:
- Checking satisfiability of the ontology is \(\text{NLogSpace-complete} \) in the size of the ontology (combined complexity).
- \(\text{LogSpace} \) in the size of the ABox (data complexity).
- TBox reasoning is \(\text{NLogSpace-complete} \) in the size of the TBox.
- Query answering is \(\text{NP-complete} \) in the size of the query and the ontology (comb. com.).
- \(\text{NLogSpace-complete} \) in the size of the ontology.
- \(\text{LogSpace} \) in the size of the ABox (data complexity).

References I

Reasoning over extended ER models.

The DL-Lite family and relations.
Available at http://www.dcs.bbk.ac.uk/research/techreps/2009/bbkcs-09-03.pdf.

Pushing the EL envelope.

Reasoning on UML class diagrams.

References II

On the decidability of query containment under constraints.

Tailoring OWL for data intensive ontologies.

DL-Lite: Tractable description logics for ontologies.
References

Linking data to ontologies: The description logic DL-LiteA.

Data complexity of query answering in description logics.

Tractable reasoning and efficient query answering in description logics: The DL-Lite family.

References V

Conjunctive query answering for the description logic SNIQ.

Description logic programs: Combining logic programs with description logic.

Data complexity of reasoning in very expressive description logics.

Combining Horn rules and description logics in CARIN.

References VI

Description logic systems.
In Baader et al. [BCM03], chapter 8, pages 282–305.

Characterizing data complexity for conjunctive query answering in expressive description logics.

Linking data to ontologies.
References VII

[Sch93] A. Schaerf.
On the complexity of the instance checking problem in concept languages with existential quantification.