EXERCISE 1

Decide which of the following statements is true and which is false. Give a brief explanation of your answer.

a) For all languages L_1 and L_2, it holds that $(L_1^* L_2^*)^* = (L_1^* L_2^*)^*$.

b) If L_1 and L_2 are both not regular then $L_1 L_2$ could be regular.

c) For all languages L_1 and L_2, if $L_1 \leq L_2$ then $L_1^* \leq L_2^*$.

EXERCISE 2

Show that the following languages are not regular.

a) $\{0^n 1^m 0^{n+m} | m, n > 0 \}$

b) $\{ w \in \{0,1\}^* | w \text{ is a palindrome} \}$

EXERCISE 3

Give algorithms to tell whether:

a) a regular language L is universal (i.e., $L = \Sigma^*$);

b) two regular languages have at least one string in common.

EXERCISE 4

Show that if L and M are regular languages then so is $L \cap M$ (without using the De Morgan law $L \cap M = \overline{\overline{L} \cup \overline{M}}$). Apply the construction to the following automata:

$A_L^* = \begin{array}{c}
\begin{array}{ccc}
q_0 & \xrightarrow{0} & q_1 \\
& & \xrightarrow{1} q_2
\end{array}
\end{array}$

$A_M^* = \begin{array}{c}
\begin{array}{ccc}
q_0 & \xrightarrow{1} & q_1 \\
& & \xrightarrow{1} q_2
\end{array}
\end{array}$
1) a) False. Consider the languages \(L_1 = \{a\} \) and \(L_2 = \{b\} \). Then \(b \notin (L_1^* L_2^*)^* \) but \(b \notin (L_1^* L_2^*)^* \).

1) b) True. Assume that \(L_1 = \overline{L}_2 \), i.e. \(L_2 = \overline{L}_1 \). If \(L_1 \) is not regular then \(\overline{L}_1 = \overline{L}_2 \) is also not regular (because, if \(L_2 \) were regular then, by the closure properties of regular languages, \(L_1 \) would be regular too, thus leading to a contradiction). Since \(L_2 \cup L_2 = \{\}^* \), we have that the union of two non-regular languages can be regular.

1) c) True. Given that, for all \(w \in L_1 \), we also have that \(\overline{w} \in L_2 \), the argument goes as follows. If \(w' \in L_1^* \), then \(w' = w_1 \ldots w_n \) for some \(n \in \mathbb{N} \) and \(w_i \in L_1 \) (\(1 \leq i \leq n \)). But then each \(w_i \) is also in \(L_1 \) and therefore \(w' \in L_1^* \).

2) a) Assume that the language is regular. Then, by the pumping lemma, we would have that:

- There exists \(n \) such that
- For all \(w \in L \) such that \(|w| > n \)
 - There are three strings \(x, y, z \) such that \(w = x y z \) and \(|y| \leq n \), \(|y| > 1 \), and for all \(k \geq 0 \), \(x y^k z \in L \).

Now, given some \(n \), let \(w = 0^n 1^n 2^n 0^n \). Since \(|w| = 4n \) we have that \(|w| > n \). In order to apply the pumping lemma we need to find strings \(x \) and \(y \) such that \(|xy| \leq n \). The only possible choices are \(x = 0^n \) and \(y = 0^b \) where \(b \geq 1 \). But then we have that \(x z = 0^n 1^n 2^n 0^{n+b} \) and thus \(n+b+n \neq 2n \). Therefore, for \(b = 0 \), \(x y^2 z \notin L \). Since we assumed that the language is regular this is a contradiction. Hence the language cannot be regular.
2) b) Again, we use the pumping lemma. Given some \(n \), let \(w = 0^n 1^n \).
If we consider \(x, y, z \) such that
\[
a) \ w = xy^2z, \quad b) \ |xy| \leq n, \quad c) \ |y| \geq 1
\]
then \(y \) can only be a non-empty string of 0's. Thus, for each \(k \geq 1 \), the string \(xy^kz \) has more 0's on the left-hand side of 1 than on the right-hand side. We can conclude that, for \(k \geq 1 \), \(xy^kz \notin L \). Therefore we have that the language is not regular.

3) a) Note that if \(L \) is universal then \(\Sigma^* - L = \emptyset \). Therefore we only need to check whether \(L \) is empty.

3) b) We can check whether the intersection \(L \) of the two languages that we denote with \(L_1 \) and \(L_2 \) is non-empty, i.e., we can check whether \(L = L_1 \cap L_2 \) is non-empty. Note that \(L \) is regular because of the closure properties of regular languages.

4) Let \(L \) and \(M \) be the regular languages accepted by the automata \(A_L = (Q_L, \Sigma_L, \delta_L, q_L, F_L) \) and \(A_M = (Q_M, \Sigma_M, \delta_M, q_M, F_M) \). We assume:
\[
a) \ \Sigma_L = \Sigma_M = \Sigma, \quad b) \ A_L \text{ and } A_M \text{ are deterministic.}
\]
We construct an automaton \(A \) that simulates \(A_L \) and \(A_M \). The states of \(A \) are pairs of states \((p, q)\) where \(p \in Q_L \) and \(q \in Q_M \). If \(a \) is an input symbol and \(A \) is in state \((p, q)\) then \(A \) goes in state \((p', q')\) where \(p' = \delta_L(p, a) \) and \(q' = \delta_M(q, a) \). The start state of \(A \) is \((q_L, q_M)\) and the accepting states of \(A \) are those pairs \((p, q)\) where both \(p \in F_L \) and \(q \in F_M \).
To sum up, we have that

\[A = (Q_L \times Q_R, \Sigma, S, (q_i, q_n), F_L \times F_R) \]

where \(S((q, q'), a) = (S_L(q, a), S_R(q', a)) \).

Note that \(A \) is constructed in such a way that \(w \) is accepted by \(A \) (i.e. \(w \in L(A) \)) if and only if \(w \) is accepted by \(A_L \) and \(A_R \) (i.e. \(w \in L(A_L) \) and \(w \in L(A_R) \)), i.e. if \(w \in L(A_L) \cap L(A_R) \) or \(w \in L \cap M \).

By applying this construction to the automata \(A_L^* \) and \(A_R^* \) we get:

Note that \(q_{i, j} \) is shorthand for \((q_i, q_j) \).