EXERCISE 1

Design ε-NFA's for the following languages:
a) The set of strings consisting of zero or more a's, followed by zero or more b's, followed by zero or more c's.
b) The set of all strings that consist of either 01 repeated one or more times or 010 repeated one or more times.

EXERCISE 2

Consider the following ε-NFA's.

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>{p}</td>
<td>φ</td>
<td>{q}</td>
<td>{r}</td>
</tr>
<tr>
<td>q</td>
<td>φ</td>
<td>{p}</td>
<td>{r}</td>
<td>{p,q}</td>
</tr>
<tr>
<td>r</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
</tr>
</tbody>
</table>

ε-NFA₁

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>φ</td>
<td>{p}</td>
<td>{q}</td>
<td>{r}</td>
</tr>
<tr>
<td>q</td>
<td>{p}</td>
<td>{q}</td>
<td>{r}</td>
<td>φ</td>
</tr>
<tr>
<td>r</td>
<td>{q}</td>
<td>{r}</td>
<td>φ</td>
<td>{p}</td>
</tr>
</tbody>
</table>

ε-NFA₂

a) Compute the ε-closure of each state.
b) Give all the strings of length three or less accepted by the automata.
c) Convert the automata to DFA's.

EXERCISE 3

Convert the following ε-NFA's to a DFA's.
1) a)

1) b)

2) a) Remember that:
\[
\begin{align*}
\text{E-NFA}_2: & \quad \text{ECLOSE}(p) = \{p, q, r\}, \text{ECLOSE}(q) = \{q\}, \text{ECLOSE}(r) = \{r\} \\
\text{E-NFA}_2: & \quad \text{ECLOSE}(p) = \{p\}, \text{ECLOSE}(q) = \{p, q\}, \text{ECLOSE}(r) = \{p, q, r\}
\end{align*}
\]

2) b) E-NFA

All strings except for: bba, bbb, bbc

E-NFA

All strings except for: ε, a, b, aa, ab, ba, aaa, aab, aba, baa

2) c) From E-NFA to NFA

Remember that
\[
\begin{align*}
S_N(q, a) &= 3^\varepsilon (q, a) = \text{ECLOSE}(U_{p \in \text{ECLOSE}(q)} S(p, a))
\end{align*}
\]
The calculations for ε-NFA$_1$ go as follows:

\[q_e(p, a) = \text{ECLOSE}(\delta(p, a) \cup \delta(q_1, a)) = \text{ECLOSE}(\{p\} \cup \{q_1\}) = \{p, q_1\} \]

\[q_e(p, b) = \text{ECLOSE}(\delta(p, b) \cup \delta(q_1, b)) = \text{ECLOSE}(\{p\} \cup \{q_1\}) = \{q_1\} \]

\[q_e(p, c) = \text{ECLOSE}(\delta(p, c) \cup \delta(q_1, c)) = \text{ECLOSE}(\{p\} \cup \{q_1\}) = \{p, q_1\} \]

\[q_e(q_1, a) = \text{ECLOSE}(\delta(q_1, a)) = \text{ECLOSE}(\{p\}) = \{p, q_1\} \]

\[q_e(q_1, b) = \text{ECLOSE}(\delta(q_1, b)) = \text{ECLOSE}(\{q_1\}) = \{q_1\} \]

\[q_e(q_1, c) = \text{ECLOSE}(\delta(q_1, c)) = \text{ECLOSE}(\{p\}) = \{p, q_1\} \]

\[q_e(r, a) = \text{ECLOSE}(\delta(r, a)) = \text{ECLOSE}(\{r\}) = \{r\} \]

\[q_e(r, b) = \text{ECLOSE}(\delta(r, b)) = \text{ECLOSE}(\{r\}) = \{r\} \]

\[q_e(r, c) = \text{ECLOSE}(\delta(r, c)) = \text{ECLOSE}(\{r\}) = \{r\} \]

By doing the same calculations for ε-NFA$_2$ we get the following NFA's:

\[
\begin{array}{l|lll}
 S & a & b & c \\
\hline
 p & \{p, q_1\} & \{q_1\} & \{p, q_1\} \\
 q & \{p, q_1\} & \{q_1\} & \{p, q_1\} \\
 r & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

(\text{Note that ε-NFA$_1$ accepts the empty string } \varepsilon)

From NFA to DFA

This was already done in exercise E 4 (06/12/2008)
3) \(\varepsilon \)-NFA

From \(\varepsilon \)-NFA to NFA (as above)

<table>
<thead>
<tr>
<th>(S_0)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(* \to p)</td>
<td>({p, q, r})</td>
<td>({q, r})</td>
<td>({r})</td>
</tr>
<tr>
<td>(q)</td>
<td>(\emptyset)</td>
<td>({q, r})</td>
<td>({r})</td>
</tr>
<tr>
<td>(* \to r)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>({r})</td>
</tr>
</tbody>
</table>

From NFA to DFA (subset construction)

<table>
<thead>
<tr>
<th>(S_0)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = \emptyset)</td>
<td>(A)</td>
<td>(A)</td>
<td>(A)</td>
</tr>
<tr>
<td>(B = {p})</td>
<td>(H)</td>
<td>(G)</td>
<td>(D)</td>
</tr>
<tr>
<td>(C = {q})</td>
<td>(A)</td>
<td>(G)</td>
<td>(D)</td>
</tr>
<tr>
<td>(D = {r})</td>
<td>(A)</td>
<td>(A)</td>
<td>(D)</td>
</tr>
<tr>
<td>(E = {p, q})</td>
<td>(H)</td>
<td>(G)</td>
<td>(D)</td>
</tr>
<tr>
<td>(F = {p, r})</td>
<td>(H)</td>
<td>(G)</td>
<td>(D)</td>
</tr>
<tr>
<td>(G = {q, r})</td>
<td>(A)</td>
<td>(G)</td>
<td>(D)</td>
</tr>
<tr>
<td>(H = {p, q, r})</td>
<td>(H)</td>
<td>(G)</td>
<td>(D)</td>
</tr>
</tbody>
</table>

\(\varepsilon \)-NFA

We only provide the final DFA

[Diagram of the DFA]