Exercise 1: Consider a TM $M_0 = (Q_0, \Sigma, \Gamma, \delta, q_0, \delta', F_0)$.

Show that $L(M)$ is also accepted by a TM M_1 that moves left of its initial position (i.e., e by a TM with a semi-infinite tape).

Idea: M_0 is a two-track TM: $M_0 = (Q_0, \Sigma, \Gamma, \delta, q_0, \delta', F_0)$

Let us call q_0 the initial tape position of M_0.

\[\begin{array}{cccc} & a & b & c & d & e & f & g \\ \downarrow & & & \uparrow & & & & \end{array} \]

\[\hspace{1cm} M_0 \hspace{4cm} M_1 \]

\[\begin{array}{cccc} \epsilon & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array} \hspace{0.5cm} \rightarrow \hspace{0.5cm} \begin{array}{cccc} 0 & 1 & 2 & 3 \end{array} \]

The states of M_1 are all the states of M_0, with an additional component P or N, indicating whether M_0 is currently working on the track representing the positive or negative portion of the tape of M_0:

$Q_1 = Q_0 \times \{P, N\}$

Γ_1 is the set of pairs of symbols of Γ, plus symbols with * on T_0:

$\Gamma_1 = \Gamma_0 \times (\Gamma_0 \cup \{*\})$

The * on T_0 is used to detect when M_1 reaches the leftmost tape position.

Initially, Γ_1 writes * on T_0 of the leftmost position.

For the transitions of M_1, we need to distinguish 4 cases:

1) M_0 is to the right of $q_0 \rightarrow M_1$ works on track T_0

2) M_0 is to the left of $q_0 \rightarrow M_1$ works on track T_0

3) M_0 is on $q_0 \rightarrow M_1$ is on $[q_0]$
Let \(\delta_0(q, x) = (q', y, d) \) be a transition of \(M_0 \).

Then we have

1) \(\delta_1([q, P], [x]) = ([q', P], [y], d) \) for every \(z \in \Gamma \)

(i.e. \(z \neq x) \))

2) \(\delta_1([q, N], [x]) = ([q', N], [y], d) \) for every \(z \in \Gamma \)

where \(\bar{d} = L \) if \(d = R \)

\(\bar{d} = R \) if \(d = L \)

3) if \(M_0 \) moves right, i.e. \(d = R \)

\(\delta_1([q, -], [x]) = ([q', P], [y], R) \)

if \(M_0 \) moves left, i.e. \(d = L \)

\(\delta_1([q, -], [x]) = ([q', N], [y], R) \)

Final states of \(M_1 \) : \(F_1 = F_0 \times \{P, N\} \)
Exercise 2: Construct a TM that computes the length of its input string, represented as a binary number (with the least significant digit on the right). Assume $\Sigma = \{0, 1\}$.

Idea: We write a counter to the left of the input separated by a $\$$. We repeatedly move to the right of the input, delete the last symbol, come back and increment the counter.
Exercise 3: For a TM \(M \) with input alphabet \(\Sigma \), let \(\langle M, w \rangle \) denote the encoding \(E(M) \) of \(M \) followed by input \(w \).

Consider the language \(L = \{ \langle M, w \rangle \mid M \text{ when started on an input string } w, \text{ eventually does three consecutive transitions in which it moves the head in the same direction} \} \).

a) Show that \(L \) is recursively enumerable.
b) Show that \(L \) is not recursive.

e) We reduce \(L \) to \(L_m \).

The reduction \(R \) is a TM that takes as input \(\langle M, w \rangle \) and produces as output \(R(\langle M, w \rangle) = \langle M', w \rangle \) such that \(\langle M, w \rangle \in L \iff \langle M', w \rangle \in L_m \).

We describe how \(R \) has to transform \(E(M) \) to obtain \(E(M') \):

- \(R \) has to add to the states of \(M \) a second component that counts how many consecutive transitions \(M \) has made in the same direction:

 - The values of the counter component are \(-3, -2, -1, 0, 1, 2, 3 \).

- The transitions of \(M \) are modified to update the counter:

 - If \(M \) moves right:
 \[
 \begin{align*}
 \text{if } c = -2 & \Rightarrow c = 1 \\
 \text{then in } M' : & \begin{cases}
 c = -1 & \Rightarrow c = 1 \\
 c = 1 & \Rightarrow c = 2 \\
 c = 2 & \Rightarrow c = 3
 \end{cases}
 \end{align*}
 \]

 - If \(M \) moves left:
 \[
 \begin{align*}
 \text{if } c = -2 & \Rightarrow c = -3 \\
 \text{then in } M' : & \begin{cases}
 c = -1 & \Rightarrow c = -2 \\
 c = 1 & \Rightarrow c = -1 \\
 c = 2 & \Rightarrow c = -1
 \end{cases}
 \end{align*}
 \]

- The states with the counter \(3 \) or \(-3 \) are the only final states.
b) We reduce the halting problem L_M to L.

The reduction R is a TM that takes as input $<M, w>$ and produces as output $R(<M, w>) = <M', w>$ such that $<M, w> \in L_M$ iff $<M', w> \in L$.

We describe how R has to transform $E(M)$ to obtain $E(M')$:

- The final states of M are made non-final in M'.
- From a final or blocking state of M we add to M' a transition to a new state from which M' makes 3 transitions to the right.
- We have to make sure that M' never does 3 consecutive transitions in the same direction (except the ones above).

Hence:

- if M does an R-move, then M' does an R-L-R move.
- if M does an L-move, then M' does an L-R-L move.

- the tape symbol is changed only in the first of the three moves, while the other two leave the tape unchanged.

- for the dummy move, additional states are needed, and these need to be distinct for each state of M.

Exercise 4: Let $g(x)$ be a PRF.

a) Show that the following predicate is a PRF:
\[f(x, y) = \begin{cases} 1 & \text{if } g(i) < g(x) \text{ for all } 0 \leq i \leq y \\ 0 & \text{otherwise} \end{cases} \]

\[f(x, y) = \sum_{i=0}^{y} \text{lt}(g(i), g(x)) \]

b) Let f be defined by
\[f(x) = \begin{cases} 2^n & \text{if } x = 0 \\ 3 & \text{if } x = 1 \\ f(x) = f(x-3) + f(x-1) & \text{if } x \geq 3 \end{cases} \]

Give the values $f(4)$, $f(5)$, $f(6)$.

- $f(3) = f(0) + f(2) = 1 + 3 = 4$
- $f(4) = f(1) + f(3) = 2 + 4 = 6$
- $f(5) = f(2) + f(4) = 3 + 6 = 9$
- $f(6) = f(3) + f(5) = 4 + 9 = 13$

Show that f is a PRF.

We have that $f(y+1) = f(y-2) + f(y)$.

We introduce an auxiliary function h with
\[h(y) = [f(y), f(y+1), f(y+2)] = qm_3(f(y), f(y-1), f(y-2)) \]
\[h(0) = qm_3([f(0), f(1), f(2)]) = qm_3(1, 2, 3) = 2^2 \cdot 3^2 \cdot 5^4 \]
\[h(y+1) = [f(y+1), f(y+2), f(y+3)] = \]
\[= [f(y+1), f(y+2), f(y) + f(y+2)] = \]
\[= [\text{dec}(1, h(y)), \text{dec}(2, h(y)), \text{dec}(0, h(y)) + \text{dec}(2, h(y))] = qm_3(\cdots) \]

Hence h is PR. Then $f(y) = \text{dec}(0, h(y))$ is also PR.