Exercise 1

Decide which of the following statements is true and which is false. Give a brief explanation of your answer.

a) For all languages L_1 and L_2, it holds that $(L_1^* L_2^*)^* = (L_1^* L_2^*)^*$

b) If L_1 and L_2 are both non-regular then $L_1 \cup L_2$ could be regular.

c) For all languages L_1 and L_2, if $L_1 \subseteq L_2$ then $L_1^* \subseteq L_2^*$.

Solution:

a) False. Consider the languages $L_1 = \{a\}$ and $L_2 = \{b\}$. Then $b \in (L_1^* L_2^*)^*$ but $b \notin (L_1^* L_2^*)^*$.

b) True. Assume that $L_2 = \overline{L_1}$, i.e. $L_2 = \overline{L_1}$. If L_2 is non-regular then no is in L_2 because, if L_2 would be regular then, by the closure properties of regular languages, $L_1 = \overline{L_2}$ would be regular too, thus leading to a contradiction. Since $L_1 \cup L_2 = L_1 \cup \overline{L_1} = \Sigma^*$ we have that the union of two non-regular languages can be regular.

c) True. Given that for all $w \in L_1$ we have that $w \in L_2$, the argument goes as follows. If $w' \in L_1^*$ then $w' = w_1 w_2 \ldots w_n$ for some $n \in \mathbb{N}$ and $w_i \in L_1$ ($1 \leq i \leq n$). But then each w_i is also in L_2 ($w_i \in L_2$ for $1 \leq i \leq n$) and therefore $w' \in L_2^*$.

Exercise 2

Show that the language
\[L = \{ 0^n 1^n 0^{n+m} \mid m, n \geq 0 \} \]
is not regular.

Solution:

Assume that \(L \) is regular. Then, by the pumping lemma, we have that:

There exists \(n \) such that for all \(w \in L \) such that \(|w| \geq n \), there are three strings \(x, y, z \) such that:
\[w = xyz, \quad |xy| \leq n, \quad |y| > 0, \quad xy^kz \in L. \]

Now, given some \(n \), let \(w = 0^n 1^n 0^{2n} \).

\[w = \underbrace{0\cdots 0}_{n} \underbrace{1\cdots 1}_{n} \underbrace{0\cdots 0}_{2n} \]

Since \(|w| = 4n \) we have that \(|w| > n \).

In order to apply the pumping lemma, we need to find strings \(x \) and \(y \) such that \(|xy| \leq n \). The only possible choices are: \(x = 0^a \) and \(y = 0^b \) where \(b > 1 \).

But then we have that \(xy = 0^a 1^n 0^b \) and thus that \(n + n - b = 2n \). Therefore, for \(k = 0 \), \(xy^kz \notin L \).

Since we assumed that \(L \) is regular, this is a contradiction. Hence \(L \) cannot be regular.
Exercise 3

Show that the language
\[L = \{ w \in \{0,1\}^* \mid w \text{ is a palindrome} \} \]
is not regular.

[A string \(w \) is a palindrome if \(w = w^R \) where \((-)^R \) denotes string reversal.]

Solution:

Again, we use the pumping lemma.

Given some \(n \), let \(w = 0^n10^n \).

If we consider \(x, y, z \) such that
 a) \(w = xyz \)
 b) \(|xy| \leq n \)
 c) \(|y| \geq 1 \)

then \(y \) can only be a non-empty string of 0's.

Thus, for each \(k > 1 \), the string \(xyz^kz \) has more 0's on the left-hand side than on the right-hand side. We conclude that, for \(k > 1 \), \(xyz^kz \notin L \).

Therefore we have that \(L \) is not regular.
Exercise 4 (4.3.3 from textbook)

Give an algorithm to tell whether a regular language L is universal (i.e. $L = \Sigma^*$?).

Solution:

If L is universal then $\overline{L} = \Sigma^* - L = \emptyset$. Therefore we only need to check whether \overline{L} is empty.

Exercise 5 (4.3.4 from textbook)

Give an algorithm to tell whether two regular languages have at least one string in common.

Solution:

We can check whether the intersection L of the two languages that we denote with L_1 and L_2 is non-empty.

$$L = L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

An automaton accepting L can be easily constructed from automata accepting L_1 and L_2. Note that all automata need to be deterministic, otherwise complement of a language might not be accepted.