Question: How can we prove that for the previous problems regarding CFLs (e.g. equality, universality) there is no algorithm that solves them?

Solution: we need a formal definition of algorithm.

Let us start with something we know: Java.

Can we show that there is no Java program that solves these problems?

Hello - World problem:

Your first Java program: HW:

```java
public class HW {
    public static void main(String[] args) {
        System.out.println("Hello, world");
    }
}
```

The first 12 characters output by HW are "Hello, world".

Hello - world problem (HWP): given an arbitrary Java program P and an input I for P, does P(I) print "Hello, world" or its first 12 characters?
Consider a solution to HWP:

\[P \quad \rightarrow \quad H \quad \rightarrow \quad \text{"yes", "no"} \]

Input \rightarrow \text{false program} \rightarrow \text{output}

Does such a program \(H \) exist?
- we could run \(P \) for print statements
- but, how do we know whether they are executed?

To give you an idea how difficult this can become, consider Fermat's last theorem:

The equation \(x^n + y^n = z^n \) has no integer solution for \(n \geq 3 \).

For \(n=2 \), a solution is \(x=3, y=4, z=5 \)

For \(n \geq 3 \), mathematicians have believed that the theorem is true, but no proof was found until recently (proof given by Wiles is very complex, and still under verification)

Consider a sample Java program \(P_1 \) that:

1) reads input \(n \)
2) for all possible \(x, y, z \) do

 if \((x^n + y^n = z^n) \)

 println("Hello, world!")

Consider input \(n=3 \): \(P_1 \) prints "Hello, world!" only if F.L.T is false, otherwise \(P_1 \) loops forever.
If we could solve HWP, we would also have proved or disproved F.L.T.

This would be too nice!! Where is the problem?

Theorem: There is no finite program H that decides HWP.

Proof: Assume H exists and derive a contradiction.

Consider H:

```
   P  \rightarrow H
   \text{"yes"} \quad \text{\"no\"}
   I
```

We modify H to H_1, so that H_4 prints "Hello, world" instead of "no"

```
P  \rightarrow H_4
I  \rightarrow \text{"Hello, world"}
```

(Note: we have to modify the quintuple statements in H)

We modify H_4 to H_2, which takes only input P and feeds it to H_4 as both P and I:

```
P  \rightarrow \text{Buffer}  \rightarrow H_2
```

Java program:

```
java program

reads in P, stores it in a string
and passes it twice to $H_4$
```

Let us consider $H_2(P)$ when $P = H_2$:

- Suppose $H_2(H_2) = \text{"yes"}$ \implies $P(P) = \text{"Hello, world"}$
- Suppose $H_2(H_2) = \text{"Hello, world"}$ \implies $P(P) \neq \text{"Hello, world"}$

But $P = H_2$ \implies contradiction \implies H, H_1, H_2 cannot exist! Q.e.d
We have shown HWP to be undecidable, i.e., there cannot be an algorithm (or a program) that solves it.

We can show that other problems are undecidable by "reducing" HWP to them.

Reductions

foo-problem: given a program R and its input z, does R ever call a function named foo while executing on input z.

Idea: we **reduce** the HWP to the foo-problem, i.e., we show that if it's possible to solve the foo-problem on \((R, z)\), then we can solve HWP on \((Q, y)\) for any program Q with input y.

Since HWP is undecidable, so is the foo-problem.

Suppose there is a program F that takes as input \((R, z)\) and decides the foo-problem for \((R, z)\).

We show how F can be used to construct H that decides HWP on input \((R, y)\).
Idea: apply modifications to Q

1) rename function foo in Q (if present) to pipp
 $\Rightarrow Q'$
2) add a dummy function foo to $Q' \Rightarrow Q''$
3) modify Q'' to store all its output in some array A
 $\Rightarrow Q'''$
4) modify Q''' so that after every println statement
 it checks array A to see if "Hello, world" has been
 printed. If yes, then call function foo $\Rightarrow Q''''$

Note: these modifications can be done by a Java program

Let $R = Q''''$ and $\varepsilon = \gamma$

We have by construction:

$Q(\varepsilon)$ prints "Hello, world" \Rightarrow

$R(\varepsilon)$ calls function foo.

Hence, we can use F that solves foo-problem on $R(\varepsilon)$

to construct H that solves HWFO on $Q(\varepsilon)$.

Schematically:

$$
(Q, \varepsilon) \xrightarrow{H} (R, \varepsilon) \xrightarrow{(R, \varepsilon)} F \xrightarrow{\text{"yes" or "no"}}$$

But: since H does not exist, else F cannot exist.
Sharing undecidability by reduction from undecidable problems

Problem \(P_2 \) taking input \(I_2 \) known to be undecidable

\[P_1(I_1) = \text{"yes"} \iff P_2(I_2) = \text{"yes"} \]

Given solution program \(S_2 \) for \(P_2 \), we could obtain

\[S_1 \]

Since \(S_1 \) does exist, we obtain that \(S_2 \) cannot exist

\[\Rightarrow P_2 \text{ is undecidable.} \]

Existence of undecidable problems:

While it was tricky to show that a specific problem is undecidable, it is rather easy to show that there are infinitely many undecidable problems.

We use a counting argument:

- a problem \(P \) is a language over \(\Sigma \) (for some finite \(\Sigma \))
 (the strings in the language represent those instances of \(P \) for which the answer is "yes")
 \[\Rightarrow \text{there are uncountably many problems} \]
- an algorithm is a string over \(\Sigma' \) (for some finite \(\Sigma' \))
 \[\Rightarrow \text{there are countably many algorithms} \]
 \[\Rightarrow \text{there must be (uncountably many) problems for which there is no algorithm.} \]
Some (or C, Pascal, ...) programs are not well-suited to develop a theory of computation:
- run-time environment and run-time errors
- complex language constructs
- finite memory
- "state" of the computation is complicated to represent
 would need to show that the results for a specific programming language are in fact general

=> We resort to an abstract computing device, the
 Turing Machine (TM)
 - simple and universal programming language
 - state of computation is easy to describe
 - unbounded memory
 - can simulate any known computing device

Church–Turing hypothesis:
 All reasonably powerful computation models are equivalent to TMs (but not more powerful).

=> TMs model anything we can compute.
The TM:

```
- b₁ b₂ b₃ b₄ b₅ ... e₁ e₂ e₃ ... eₙ bₘ ...
```

infinite tape

```
read/write head

Finite state control
```

Programmed by specifying transitions:

- move depends on:
 - current state (finitely many)
 - symbol under the tape head

- effects of a move:
 - new state
 - write new symbol on tape cell under the head
 - move head left/right

Observations:

- relationship to real computers: CPU = finite state control memory = tape

 "differences" (features lost in the abstraction)
 - no random access memory
 - limited instruction set

Anyway: a TM can simulate a computer (with a cubic increase in running time — see book 8.6)
Definition: $M = (Q, \Sigma, \Gamma, \delta, q_0, \emptyset, F)$

- Q ... set of states (finite) $q_0 \in Q$... initial state
- Σ ... input alphabet (finite) Γ ... tape alphabet (finite)
- $F \subseteq Q$... final states $\emptyset \in \Gamma$... blank symbol

Conditions: $\Sigma \subseteq \Gamma$, since input is written initially on tape
$\emptyset \in \Gamma - \Sigma$, since the rest of the tape is blank

Initially:
- state q_0
- tape contains w surrounded by \emptyset
- tape head is at the leftmost cell of the input

Transitions: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

$\delta(q, \gamma) = (p, y, d)$ means that
- if M is in state q and tape head is over symbol γ,
 then M changes state to p
- replaces γ by y on the tape
- moves tape head by one cell in direction d
 (left for L, right for R)

The TM is deterministic:
- for each $\delta(q, \gamma)$ we have at most one move
- $\delta(q, \gamma)$ could also be undefined

Acceptance: w is accepted by TM M if M, when started with w
on the tape, eventually enters a final state

We can assume that all final states are halting, i.e. no transition is defined for them

Rejection: w rejects in non-final state (i.e., no transition defined)
- never halts (infinite loop)
Difference between FA/PDA and TM:

FA/PDA scans over w and accepts/rejects when it has reached its end.

TM can move back and forth over w and accepts/rejects when it halts on rejects if it loops forever.

Example: \[L = \{ w^* \# w^* | w \in \{0, 1\}^+, \# \in \{0, 1, \#\}^* \} \]

Initially

TM idea: remember leftmost symbol, erase it
- move to leftmost symbol after #’s
- if the two don’t match, then reject
- otherwise replace the symbol by #, move left and start again

\[M = (Q, \Sigma, \Gamma, \delta, q_0, \delta, \delta) \]

\[Q = \{ q_1, q_2, \ldots, q_7 \} \]

\[\Sigma = \{ 0, 1, \# \} \]

\[\Gamma = \{ 0, 1, \#, \# \} \]

\[F = \{ q_7 \} \]

\[\delta(q_0, 0) = (q_1, \#, R) \] {erase 0 and look for matching 0

\[\delta(q_0, 1) = (q_1, \#, R) \] { - - - - - - 1

\[\delta(q_1, 0) = (q_1, 0, R) \]

\[\delta(q_1, 1) = (q_1, 1, R) \]

\[\delta(q_1, \#) = (q_3, \#, R) \] {skip over 0’s and 1’s, until # is found (remembering 0)

\[\delta(q_2, 0) = (q_2, 0, R) \]

\[\delta(q_2, 1) = (q_2, 1, R) \]

\[\delta(q_2, \#) = (q_4, \#, R) \] { - - (remembering 1)

\[\delta(q_3, 0) = (q_3, 0, L) \]

\[\delta(q_3, 1) = (q_3, 1, L) \]

\[\delta(q_3, \#) = (q_3, \#, L) \]
\(\delta(q_3, \#) = (q_3, \#, R) \) \{ Skip over \#'s, look for 0, 1, and replace it by \#. \}
\(\delta(q_3, 0) = (q_5, \#, L) \)

Note: if after \#'s a 0 or a 1 is found, M halts and rejects

\(\delta(q_4, \#) = (q_4, \#, R) \)
\(\delta(q_4, 1) = (q_5, \#, L) \)

As previous one, replacing 0/1 with 1/0.

\(\delta(q_5, \#) = (q_5, \#, L) \)
\(\delta(q_5, 0) = (q_6, 0, L) \)
\(\delta(q_5, 1) = (q_6, 1, L) \)
\(\delta(q_5, \Phi) = (q_7, \Phi, R) \)

More left skipping \#'s.

If to the left of the \#'s a 0 or 1 is found, move to \(q_6 \) to skip them also. If \(\Phi \) is found, accept.

\(\delta(q_6, 0) = (q_6, 0, L) \)
\(\delta(q_6, 1) = (q_6, 1, L) \)
\(\delta(q_6, \Phi) = (q_0, \Phi, R) \)

More left, skipping 0/\(\Phi \) and 1/\(\Phi \), and restart again.

Transition diagram:

```
0/\Phi \rightarrow q_0
\Phi/\Phi \rightarrow q_1
0/0 \rightarrow q_1
0/\# \rightarrow q_4
\#/\# \rightarrow q_4
0/\# \rightarrow q_3
0/\# \rightarrow q_5
\#/\# \rightarrow q_5
\Phi/\# \rightarrow q_6
0/0 \rightarrow q_0
```

Immediate description (I.D.) or configuration of a TM describes the current situation of TM and tape.

\[I.D. = \alpha_1 \sigma \alpha_2 \quad \text{with} \quad q \in Q \]
\[\alpha_1, \alpha_2 \in \Gamma^* \]

means:
- non-blank portion of tape contains \(\alpha_1, \alpha_2 \)
- head is on leftmost symbol of \(\alpha_2 \)
- machine is in state \(q \)

Corresponds to

\[\text{BLANKS} \quad \alpha_1 \quad \alpha_2 \quad \text{BLANK} \]

\[\uparrow \text{state } q \]

As for PDAs, we use \(\vdash \) and \(\vdash^* \) to denote the change of I.D. due to transitions.

Example:

\[q_0 \alpha_1 \# \alpha_1 \vdash q_1 \alpha_1 \# \alpha_1 \vdash q_2 \alpha_1 \# \alpha_1 \vdash q_3 \alpha_1 \# \alpha_1 \vdash q_4 \alpha_1 \# \alpha_1 \vdash q_5 \alpha_1 \# \alpha_1 \vdash q_6 \alpha_1 \# \alpha_1 \vdash q_7 \alpha_1 \# \alpha_1 \vdash q_8 \alpha_1 \# \alpha_1 \vdash \]

\(\alpha \) accepts

Formal definition of language accepted by a TM \(M \):

\[L(M) = \{ w \in \Sigma^* \mid q_0 w \vdash^* \alpha_1 \alpha_2 \quad \text{with} \quad q \in F \quad \text{and} \quad \alpha_1, \alpha_2 \in \Gamma^* \} \]
Notes:

1) We have used TMs for language recognition, which in turn corresponds to solving decision problems.
 - We can, however, consider also TMs as computing functions.
 - The output (result of the function) is left on the tape.

2) The class of languages accepted by TMs are called recursively enumerable.
 - For a string w in the language
 - The TM halts on input w in a final state.
 - For a string w not in the language
 - The TM may halt in a non-final state, or
 - It may loop forever.

These languages for which the TM always halts (regardless of whether it accepts or not) are called recursive.
 - These languages correspond to recursive functions.
 - TMs that always halt are a good model of algorithms and they correspond to decidable problems.
We present some notational conveniences that make it easier to write TM programs.

Idea: use structured states and tape symbols

1) Storage in the state: ("CPU register")

Idea: state names are a tuple of the form

\[[q, D_1, \ldots, D_k] \]

- \(D_i \) is the stored symbol
- \(q \) is control portion of the state

Example: TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, q, F) \) for \(L = 01^*10^* \)

Idea: \(M \) remembers the first symbol and checks that it does not reappear

\[Q = \{ [q_i, e] \mid i \in \{0,1\}, e \in \{0,1,_\} \} = \]

\[\{ [q_0, _], [q_0, 0], [q_0, 1], [q_1, _], [q_1, 0], [q_1, 1] \} \]

\[\Sigma = \{0, 1\} \]

\[\Gamma = \{0, 1, _\} \]

\[q_0 = [q_0, 0] \]

\[q_1 = [q_1, 1] \]

\[F = \{ [q_1, _] \} \]

Meaning of \([q_i, e] \)

- Control portion \(q_i \):
 - \(q_0 \): \(M \) has not yet read its first symbol
 - \(q_1 \): \(M \) has read its first symbol

- State portion \(e \): \(e \) is the first symbol read
transitions:
\[\delta([q_0, z], e) = ([q_1, z], e, R) \] for \(e \in \{0, 1\} \)

- M remembers in \([q_0, z]\) that it has read \(e \)
\[\delta([q_1, 0], 1) = ([q_1, 0], 1, R) \] \(M \) moves right, as long as it does not see the first symbol
\[\delta([q_1, 1], 0) = ([q_1, 1], 0, R) \]
- \(M \) expects when it reaches the first \(b \)

2) Multiple tracks:

Idea: view tape as having multiple tracks, i.e. \(\Gamma \) in each symbol in \(\Gamma \) has multiple components

<table>
<thead>
<tr>
<th>()</th>
<th>0</th>
<th>*</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(i)</td>
<td></td>
</tr>
</tbody>
</table>

the symbols on the tape are \([0, _], [_0, _], [_1, _]\)

Example: \(L = \{ww \mid w \in \{0, 1\}^+\} \)

We first need to find midpoint, and then we can match corresponding symbols.

To find midpoint: we view tape as 2 tracks

\[\begin{array}{cccc}
0 & 1 & 1 & 0 & 1 & 1
\end{array} \]

< used to put markers on symbols

Hence: \(\Gamma = \{[0, _], [_0, _], [_1, _], [_, _], [_, _]\} \)

(note: we need no * on \(b \))
We put markers on two outermost symbols and move them inwards:

\[\delta(q_0, [\#, R]) = (q_1, [\#, R], R) \] \text{ move right till end on first marked symbol}
\[\delta(q_1, [\#, L]) = (q_2, [\#, L], R) \] \text{ move rightmost mark one symbol to the left}
\[\delta(q_2, [\#, R]) = (q_3, [\#, R], L) \] \text{ move left till end on first marked symbol}
\[\delta(q_3, [\#, L]) = (q_0, [\#, L], R) \]

Note: we have each of the above for \(i \in \{0, 1\} \)

At the end: head is over first symbol of second \(w \), with \(* \) above it, in state \(q_0 \).

3) Subroutines / procedure calls

Example: shifting over

\[\text{given: } ID_1 = \alpha \, q_i \, \beta \]
\[\text{want: } ID_2 = \alpha \, \# \, q_i \, \beta \]

Subroutine for shifting over can be used repeatedly to create space in the middle of the tape

E.g. to implement a counter

\[\$0\$ \rightarrow \$1\$ \rightarrow \$\#1\$ \rightarrow \$01\$ \rightarrow \$10\$ \rightarrow \]
\[\rightarrow \$11\$ \rightarrow \$\#11\$ \rightarrow \$011\$ \rightarrow \ldots \]
Procedure call: \[\delta(q_i, X) = ([p, \text{X}], \begin{array}{c} \text{\text{\textbackslash r}} & \text{\text{\textbackslash l}} \end{array}, \text{R}), \forall X \in \Gamma \]

- remember return state \(q_i \), and erased symbol \(X \)
- state \(p \) calls procedure

Procedure \(p \) for shifting

1) Shift \(p \) cell to the right
 \[\delta([p, \text{X}], \gamma) = ([p, \text{\gamma}], R), \forall \gamma, \chi \in \Gamma \text{ with } \gamma \neq \text{\textbackslash r} \]
2) till we have reached end of \(\beta \)
 \[\delta([p, \text{\gamma}], \text{\textbackslash l}) = (\pi, \text{\gamma}, \text{L}), \forall \gamma \in \Gamma \]
3) return to calling point by moving left
 \[\delta(\pi, \gamma) = (\pi, \gamma, \text{L}), \forall \gamma \neq [\text{\textbackslash r}] \]
4) wind and return to state \(q_i \)
 \[\delta(\pi, [\text{\textbackslash r}]) = (q_i, \text{\textbackslash r}, \text{R}) \]

In fact, we can implement arbitrary complex procedures, with any kind of parameter passing

Exercise: redesign the TMs you have seen so far to take advantage of storage in the state, multiple tracks, and subroutines
Extensions to the basic TM

Note: if the TM seen so far can compute all that can be computed, then it should not become more expressive by extending it.

We consider two extensions:
- multiple tapes
- nondeterminism

and show that both can be captured by the basic T.M.

1) Multi-tape T.M.

Initially: input w is on tape 1 with tape-head on the leftmost symbol. Other tapes are all blank.

Transitions: specify behaviour of each head independently

$$S(q_1, x_1, \ldots, x_h) = (q_1, (y_1, d_1), \ldots, (y_h, d_h))$$

x_i: symbol under head i
y_i: new symbol written to head i
d_i: direction in which head i moves
To simulate a 2-tape TM M_k with a 1-tape TM M_1,
we use $2k$ tracks in M_1: for each tape of M_k
- one track of M_1 to store tape content
- one track of M_1 to mark head position with \ast

<table>
<thead>
<tr>
<th>A B A C B A</th>
<th>Tape 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Head 1</td>
</tr>
<tr>
<td>0 0 1 1 1 0</td>
<td>Tape 2</td>
</tr>
<tr>
<td>*</td>
<td>Head 2</td>
</tr>
<tr>
<td>b b a b a b</td>
<td>Tape 3</td>
</tr>
<tr>
<td>*</td>
<td>Head 3</td>
</tr>
</tbody>
</table>

Each transition of M_k is simulated by a series of transitions of M_1: $\delta(q, x_1, \ldots, x_k) = (p, (y_1, d_1), \ldots, (y_k, d_k))$
- start at leftmost head position marker
- sweep right and remember in appropriate "CPU registers" the symbols x_i under each head (note: there are exactly k, and hence finitely many)
- knowing all x_i's, sweep left, change each x_i to y_i, and move the marker for tape i according to d_i

Note: M_1 needs to remember always how many of the k heads are to its left (uses an additional CPU register)

The final states of M_1 are those that have in the state-component a final state of M_k.

We can verify that we can construct M_1 so that $L(M_1) = L(M_k)$

(details are straightforward, but cumbersome)
Simulation Speed:

Note: Enhancements do not affect the expressive power of e TM - they do affect its efficiency.

Definition: e TM is said to have running time $T(n)$ if it halts within $T(n)$ steps on all inputs of length n.

Note: $T(n)$ could be infinite.

Theorem: If M_k has running time $T(n)$, then M_k will simulate it with running time $O(T(n)^2)$.

Proof: Consider input w of length n.
- M_k runs at most $T(n)$ time on it.
- At each step, leftmost and rightmost heads can drift apart by at most 2 additional cells.
- It follows that after $T(n)$ steps, the k heads cannot be more than $2 \cdot T(n)$ apart, and M_k uses $\leq 2 \cdot T(n)$ tape cells.

Consider M_k:
- makes two sweeps for each transition of M_k
- each sweep takes at most $O(T(n))$
- number of transitions of M_k is $\leq T(n)$

It follows that the total running time is $O(T(n)^2)$.

2) Non-deterministic TM (NTM)

In a (deterministic) TM, \(\delta(q, x) \) is unique or undefined.
In a NTM, \(\delta(q, x) \) is a finite set of triples,
\[
\delta(q, x) = \{(p_1, y_1, d_1), \ldots, (p_k, y_k, d_k)\}
\]

At each NP, the NTM can non-deterministically choose which transition to make.

As for other ND devices: a string \(w \) is accepted if the NTM has at least one execution leading to a final state.

Example: \(\Sigma = \{0, 1, \ldots, 3\} \)

\[L = \{w \in \Sigma^* | \exists 1 \text{ appears in positions to the left of some } i, n \text{, with } 0 < i \leq 3 \} = \]

\[\{w \in \Sigma^* | \exists j > 0 \text{ s.t. } w_{j-1} = 0 \} \]

(\(w_i \) indicates the \(i \)-th character of \(w \))

\(\Sigma = 02146 \in L \)

\[
\begin{array}{c}
58108554421 \ldots \\
\uparrow \\
011234567890... \\
\uparrow \\
w_7 = 4 \\
w_3 = w_{7-4} = 0
\end{array}
\]

NTM:

\(Q = \{q_0, f, [q, 0], [q, 1], \ldots, [q, 3]\} \)

\(F = \{f\} \)

\(\Gamma = \{0, 1, \ldots, 3, \#\} \)
Idea for \(N \): scan \(w \) from left to right,
- guess at some \(w_j = i \),
- store \(i \) in CPU register, and
- move \(i \) steps left to find \(0 \)

Preconditions:
- \(\delta(q_0, 0) = \{(q_0, 0, R)\} \) \hspace{1cm} (since \(w_j > 0 \))
- \(\forall i > 0 : \delta(q_0, i) = \{(q_0, i, R), ([\uparrow, i], i, L)\} \)
 \hspace{1cm} \text{guess}
- \(\forall i \geq 2, \forall x \in \Sigma : \delta([\uparrow, i], x) = \{(\uparrow, i-1), x, L)\}
- \text{accepting: } \delta([\uparrow, 1], 0) = \{(\uparrow, 0, R)\}

Execution traces on input \(w = 103332 \):

\[
q_0, 103332 \rightarrow 1q_0, 03332 \rightarrow 10q_0, 3332 \rightarrow 103q_0, 332 \rightarrow
\]
\[
\vdots \rightarrow 10, [\uparrow, 3], 3332 \rightarrow 1, [\uparrow, 2], 03332 \rightarrow [\uparrow, 1], 103332
\]
\hspace{1cm} \Rightarrow \text{reject}

\[
q_0, 103332 \rightarrow * 10339, 032 \rightarrow 103, [\uparrow, 3], 332 \rightarrow
\]
\[
\vdots \rightarrow 10, [\uparrow, 2], 3332 \rightarrow 1, [\uparrow, 1], 03332 \rightarrow 10f, 3332
\]
\hspace{1cm} \Rightarrow \text{accept}

Theorem: Let \(N \) be a NTM. Then there exists a DTM \(D \) s.t.: \(L(D) = L(N) \)

Proof:
- Given \(N \) and \(w \), we show how a multi-tape DTM can simulate the execution of \(N \) on input \(w \).
- We can then convert the multi-tape DTM to a single-tape DTM.
Idea for the simulation:

Consider the execution tree of N on w

```
ID_0 = q_0 w
   / \  \\
  ID_1 -> ID_2
   /    \  \\
 ID_3   ID_4
```

DTM D will perform a breadth-first search of the execution tree, systematically enumerating the ID_0, until it finds an accepting one.

We use two tapes:

- **tape 2:** is for working
- **tape 1:** contains a sequence of ID's of N in BFS order
 - * used to separate two ID's
 - ^ marks next ID to be explored
 - ID's to the left of ^ have been explored
 - ID's to the right of ^ are still to be explored
 - initially, only $ID_0 = q_0 w$ is on the tape
 - we can use multiple tracks for convenience
Algorithm: repeat the following steps

Step 0: examine current ID_{C} (the one after \(^{\hat{}}\)) and read \(q, e \) from it

if \(q \in F \), then accept and halt

Step 1: let \(\delta(q, e) \) have \(k \) possible transitions

- copy \(ID_{C} \) onto tape 2
- make \(k \) new copies of \(ID_{C} \) and place them at the end of tape 1

Step 2: modify the \(k \) copies of \(ID_{C} \) on tape 1 to become the \(k \) possible outcomes of \(\delta(q, e) \) on \(ID_{C} \)

Step 3: move \(\hat{ } \) right past \(ID_{C} \).

clean up tape 2

return to step 0

It is possible to verify:
- the above steps can all be implemented on a DTM
- the construction is correct, i.e. \(w \in L(D) \) iff \(w \in L(N) \)

Evolution of tape 1:

1) \(\hat{ } ID_{0} \)
2) \(\hat{ } ID_{0} * ID_{0} * ID_{0} * ID_{0} * ID_{0} * \)
3) \(\hat{ } ID_{0} * ID_{1} * ID_{2} * ID_{3} * \)
4) \(\hat{ } ID_{0} * ID_{1} * ID_{2} * ID_{3} * \)
5) \(\hat{ } ID_{0} * ID_{1} * ID_{2} * ID_{3} * ID_{4} * ID_{5} * \)
6) \(\hat{ } 1, 1, - ID_{11} * ID_{22} * \)
7) \(\hat{ } ID_{0} * ID_{4} * ID_{2} * ID_{3} * ID_{1} * ID_{2} * ID_{42} * \)
Simulation time:

Let NTM N have running time $T(m)$. What is the running time of D?

Let m be the maximum number of non-det. choices for each transition (i.e., the maximum size of $\delta(q, x)$).

Consider execution tree of N on w.

Let $t = T(|w|) \Rightarrow$ exec. tree has at most t levels.

Size of the tree is $\leq 1 + m + m^2 + \ldots + m^t = \frac{m^{t+1} - 1}{m - 1} = O(m^t)$.

Thus D has at most $O(m^t)$ iterations of steps 0-3.

Each iteration requires at most $O(m^t)$ steps.

\Rightarrow Total running time is $m O(t)$, i.e. exponential.