Definition: given an alphabet \(\Sigma \), regular expressions are strings over the alphabet \(\Sigma \cup \{ +, \times, (,), \cdot, \epsilon, \phi \} \) defined inductively as follows:

- **basis**: \(\epsilon, \phi \), and each \(a \in \Sigma \) is a R.E.
- **inductive step**: if \(E \) and \(F \) are R.E. then so are:
 - \(E + F \) (union)
 - \(E \cdot F \) (concatenation)
 - \(E^* \) (closure)
 - \((E) \) (parentheses)

Example:
\[
\epsilon \cdot (a + b)^* \cdot b^* \cdot \epsilon
\]

Definition: language \(L(E) \) defined by a R.E. \(E \)
in also defined inductively:

- \(L(\epsilon) = \{ \epsilon \} \) empty word
- \(L(\phi) = \emptyset \) empty language
- \(L(a) = \{ a \} \)
- \(L(E + F) = L(E) \cup L(F) \)
- \(L((E)) = L(E) \)
- \(L(E \cdot F) = L(E) \cdot L(F) \) ... concatenation

concatenation of two languages \(L_1 \) and \(L_2 \):

\[
L_1 \cdot L_2 = \{ \omega | \omega = \xi \cdot \eta, \xi \in L_1, \eta \in L_2 \}
\]

Example:
\[
E = \epsilon + 1 \quad \Rightarrow \quad L(E) = \{ \epsilon, 1 \}
\]
\[
F = \epsilon \cdot 0 + 1 \quad \Rightarrow \quad L(F) = \{ \epsilon, 0, 1 \}
\]
\[
G = E \cdot F \quad \Rightarrow \quad L(G) = \{ \epsilon, 0, 1, 10, 11 \}
\]
\[L(E^*) = (L(E))^* \quad \text{... closure} \]

Closure of a language L?

We first define the powers of a language L:

- \(L^0 = \{ \varepsilon \} \)
- \(L^k = L^{k-1} \cdot L \)

Hence \(L^k = \{ w \mid w = x_1 \cdots x_k \text{, with } \forall x_i, x_n \in L \} \)

Closure of L: \(L^* = L^0 \cup L^1 \cup L^2 \cup \cdots \)

Example:

\[\begin{align*}
E = 0 + 1 & \quad \Rightarrow L(E) = \{0, 1\} \\
F = E^* & \quad \Rightarrow L(F) = \text{set of all binary strings} \\
E = 0 \cdot 0 & \quad \Rightarrow L(E^*) = \{ \epsilon, 00, 0000, 000000, \ldots \}
\end{align*} \]

= all even-length strings of 0's

Positive closure of a language L

\[L^+ = L^0 \cup L^1 \cup \ldots \]

We can introduce a positive closure operator on R.E.

\[L(E^+) = (L(E))^+ \]

Note: we have to distinguish between an expression E and the language \(L(E) \) defined by E.

When we write \(E = F \), we usually mean not syntactic equality, but equality of the corresponding languages, i.e., \(L(E) = L(F) \).

In other words, equality is in the alphabet of R.E.

Precedence of operators:

- High: \(\ast \)
- Low: \(+ \)

Example: \(E + F \cdot G^* = E + (F \cdot (G^*)) \)
Algebraic Laws for R.E.

Similar to the laws for arithmetic expressions, we can express laws for R.E.: treat * as sum and + as product.

- Associativity of * and +

 \[(E \cdot F) \cdot G = E \cdot (F \cdot G) = E \cdot F \cdot G\]

 \[(E + F) + G = E + (F + G) = E + F + G\]

- Commutativity of +

 \[E + F = F + E\]

 Note: * is not commutative: \[E \cdot F \neq F \cdot E\]

- Distributivity:

 1) Left distributive law of * over +: \[E \cdot (F + G) = E \cdot F + E \cdot G\]

 2) Right: \[\quad (F + G) \cdot E = F \cdot E + G \cdot E\]

 Proof of 1: The law actually holds for arbitrary languages, and does not require \(E, F, G\) to be R.E.

 Hence, we prove: for arbitrary languages \(L, M, N\):

 \[L \cdot (M \cup N) = L \cdot M \cup L \cdot N\]

 We show that for a string \(w\) we have \(w \in L \cdot (M \cup N)\) if and only if \(w \in L \cdot M \cup L \cdot N\)

 "Only if": \(w \in L \cdot (M \cup N) \Rightarrow w = x \cdot y\) with \(x \in L, y \in M \cup N\)

 Since \(y \in M \cup N\), either \(y \in M\) or \(y \in N\) (or both)

 5) If \(y \in M\), then \(w = x \cdot y \in L \cdot M\), hence \(w \in L \cdot M \cup L \cdot N\)

 (Similarly for \(y \in N\))

 "If": \(w \in L \cdot M \cup L \cdot N\), hence either \(w \in L \cdot M\) or \(w \in L \cdot N\).

 If \(w \in L \cdot M\), then \(w = x \cdot y\), with \(x \in L, y \in M\).

 (Similarly, hence \(y \in M \cup N\) and \(w = x \cdot y \in L \cdot (M \cup N)\). For \(w \in L \cdot N\)
Example: \(0 \cdot 0 + 0 \cdot 1^* = 0 \cdot (0 + 1^*) \)

we can factor out \(e \in 0 \) from the union

What about \(0 + 0 \cdot 1^* \)?

if we factor out \(e \in 0 \), what remains after the summation

on the left?

\[0 + 0 \cdot 1^* = 0 \cdot E + 0 \cdot 1^* = 0 \cdot (E + 1^*) = 0 \cdot 1^* \]

\[\text{idem} \quad \text{since } E \in L(1^*) \]

- Identities and annihilators (hold for arbitrary languages)
 - \(\emptyset + E = E + \emptyset = E \)
 - \(\varepsilon \cdot E = E \cdot \varepsilon = E \)
 - \(\emptyset \cdot E = E \cdot \emptyset = \emptyset \)

- Idempotency
 - \(E + E = E \)
 - \((E^*)^* = E^* \)
 - \(\text{Proof: Exercise 3.4.1} \)

- Other laws for closure (already seen)
 - \(\emptyset^* = \varepsilon \)
 - \(\varepsilon^* = \varepsilon \)
 - \(E^+ = E \cdot E^* = E^* \cdot E \)
 - \(E^* = E^+ + \varepsilon \)

Note: if \(E \in L(E) \), then \(E^* = E^+ \)

Exercise 3.4.4: Prove that \((E^* F^*)^* = (E + F)^* \)
Exercise 3.1.1 Write R.E.'s for the following languages

a) \(\{ w \in \{e, b, c\}^* \mid w \text{ contains at least one } e \text{ and at least one } b \} \)

b) \(\{ w \in \{0, 1\}^* \mid w \text{'s tenth symbol from the right is a 1} \} \)

c) \(\{ w \in \{0, 1\}^* \mid w \text{ contains at most one pair of consecutive 1's} \} \)

Exercise 3.1.2 Write R.E.'s for the following languages

a) The set of all strings over \(\{0, 1\} \) s.t. every pair of adjacent 0's appears before any pair of adjacent 1's

b) The set of strings of 0's and 1's whose number of 0's is divisible by 5

Solutions:

3.1.1 a) \((c^*a^*(e+c)^*b(e+b+c)^*)^* + c^*b^*(b+c)^*a^*(e+b+c)^* \)

b) \((0+1)^* \underbrace{1\cdot(0+1)\cdot\ldots\cdot(0+1)}_{3 \text{ times}} \)

c) \(0^* (1.0^+)^* \cdot 1.1. \cdot (0^+).0^* + 0^* (1.0^+)^* \)

3.1.2 a) \(\underbrace{0^* (1.0^+)^* \cdot 1^* (0.1^+)^*}_{\text{no pair of adjacent 1's}} \)

b) \(\underbrace{1^* .0^* .1^* .0^* .1^* .0^* .1^* .0^* .1^*}_{} \)
What is the relationship between the classes of languages studied so far?

\[\text{\textit{\varepsilon}-elimination} \quad \text{\textit{\varepsilon}-subset-construction} \]

\[\varepsilon\text{-NFA} \leftrightarrow \text{NFA} \leftrightarrow \text{DFA} \]

\[\text{regular languages} \quad \mapsto \quad \text{R.E.} \quad \mapsto \quad ? \]

Theorem: (R.E. \rightarrow ε-NFA)

For every R.E. E there is an ε-NFA A_E such that $L(A_E) = L(E)$.

Proof: Let us call an ε-NFA simple if

- it has only one initial state
- the initial state has no incoming arcs
- the final state has no outgoing arcs

We show by structural induction that for each R.E. E there is a simple ε-NFA A_E such that $L(E) = L(A_E)$.

Basis: $E = \varepsilon$, $E = \emptyset$, $E = e$ for some $e \in \Sigma$

\[A_\varepsilon \rightarrow 90 \rightarrow \varepsilon \rightarrow 96 \]

\[A_\emptyset \rightarrow 90 \rightarrow 96 \]

\[A_e \rightarrow 90 \rightarrow e \rightarrow 96 \]

Inductive case:
1. $E = F \cup G$
2. $E = F \cdot G$
3. $E = F^*$
4. $E = (F)$
By I.H., there are simple ε-NFA's for F and G.

1) $E = F + G$

$L(A_E) = L(A_F) \cup L(A_G) = L(F) \cup L(G) = L(F + G) = L(E)$

by I.H.

2) $E = F \cdot G$

$L(A_E) = L(A_F) \cdot L(A_G) = L(F) \cdot L(G) = L(F \cdot G) = L(E)$

by I.H.

3) $E = F^*$

$L(A_E) = L(F)^* = L(E)$

by I.H.

3) $E = (F)$

$A_E = A_F$

q.e.d.
Example: \(E = Q^* + b \cdot c \)

```
Example: E = Q^* + b \cdot c
```

Theorem (DFA \(\rightarrow \) R.E.)

For every DFA \(A \) there is a R.E. \(E_A \) s.t. \(L(E_A) = L(A) \)

Proof: Set \(A = (Q, \Sigma, \delta, q_0, F) \)

We assume without loss of generality (W.L.O.G.) that \(Q = \{ q_1, q_2, \ldots, q_n \} \)

Let \(n \) define \(L_{ij} = \{ w \mid \hat{\delta}(q_i, w) = q_j \} = \{ w \mid \text{w takes A from } q_i \text{ to } q_j \} \)

Note that \(L_{ij} \) is \(L(A_{ij}) \) with \(A_{ij} = (Q, \Sigma, \delta, q_i, \{ q_j \}) \)

We aim at constructing R.E.s \(E_{ij} \) for \(L_{ij} \).

Then we can take \(E_A = \sum_{q_0 \in F} E_{q_0} \), since

\[
L(E_A) = U_{q_0 \in F} L(E_{q_0}) = U_{q_0 \in F} \{ w \mid \hat{\delta}(q_i, w) \in F \} = L(A)
\]

How can we compute \(E_{ij} \)?

Let us define \(\forall i, j \in \{ 1, \ldots, n \} \), \(\forall k \in \{ 0, \ldots, n \} \)

\[
L_{ij}^k = \{ w \mid \text{A goes from } q_i \text{ to } q_j \text{ on input } w, \\
\text{passing only through } q_1, \ldots, q_k \text{ as intermediate states} \}
\]
Example:

\[\begin{array}{c}
q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{c} q_4 \xrightarrow{d} q_5 \xrightarrow{f} q_6 \\
q_7 \xrightarrow{e} q_8 \\
\end{array} \]

\[\begin{align*}
abc & \in L_{15}^3 \\
def & \notin L_{15}^3, \quad \text{but}\quad def \in L_{15}^4 \\
def & \in L_{15} \\
\end{align*} \]

\[L_{12} = \{e, d\} \]

\[L_{15} = \{abc, dbc\} \]

\[L_{15}^3 = L_{15}^5 = L_{15} = \{abc, dbc, def, def\} \]

Note: \[L_{ij}^k = L_{ij} \]

Since we are done if we can construct RE's \[E_{ij}^k \] for \[L_{ij}^k \].

We can simply take \[E_{ij} = E_{ij}^1 \], and hence \[E_A = \sum_{q \in F} E_{ij}^m \].

We construct \[E_{ij}^k \] by induction on \[k \]:

Base: we construct \[E_{ij}^0 \] for all \(i, j \in \{1, \ldots, n\} \).

Since \(k=0 \), we cannot go through any intermediate state.

2 cases: each with 2 sub-cases:

1. \(i \neq j \):
 - \[q_i \xrightarrow{a} q_j \]
 - \[E_{ij}^0 = q_i \]
 - \[E_{ij}^0 = \phi \]

2. \(i = j \):
 - \[q_i \xrightarrow{e_k} q_i \]
 - \[E_{ii}^0 = q_i + e_k + \cdots + e_n \]
 - \[E_{ii}^0 = \varepsilon \]

\[E_{ii}^0 = \varepsilon \]
Induction: assume we have constructed E_{ij}^{k-1} \(\forall i, j \in \{1, \ldots, n\} \).

We show how to construct E_{ij}^k.

Observe:

- L_{ij}^k will include L_{ij}^{k-1}.
- It additionally will contain those walks that lead through q_k at least once, when going from q_i to q_j.

\[q_i \xrightarrow{x_1} q_k \xrightarrow{x_2} q_k \xrightarrow{x_3} \ldots \xrightarrow{x_0} q_j \]

\[w = x_1 \cdot x_2 \cdot \ldots \cdot x_0 \]

where \rightarrow represents transitions going at most through $\{x_1, \ldots, x_{k-1}\}$.

Then $x_1 \in L_{ik}^{k-1}$, $x_2, \ldots, x_{k-1} \in L_{kk}$, $x_0 \in L_{kj}$.

\[\Rightarrow w \in L_{ik}^{k-1} \cdot \underbrace{L_{kk} \cdot \ldots \cdot L_{kk}}_{(k-1) \text{ times}} \cdot L_{kj} \]

\[\Rightarrow E_{ij}^k = E_{ij}^{k-1} + \underbrace{E_{ik}^{k-1} \cdot (E_{kk}^{k-1})^* \cdot E_{kj}^{k-1}}_{(k-1) \text{ times}} \]

Example:

\[q_1 \xrightarrow{\lambda} q_2 \xrightarrow{E_{q_1}^{q_2}} q_3 \]

<table>
<thead>
<tr>
<th>k</th>
<th>E_{11}^k</th>
<th>E_{12}^k</th>
<th>E_{21}^k</th>
<th>E_{22}^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\varepsilon + 0$</td>
<td>1</td>
<td>(\emptyset)</td>
<td>$\varepsilon + 0 + 1$</td>
</tr>
<tr>
<td>1</td>
<td>$(\varepsilon + 0) + (\varepsilon + 0)^* \cdot (\varepsilon + 0)$</td>
<td>$\varepsilon + 0 + 1$</td>
<td>(\emptyset)</td>
<td>$\varepsilon + 0 + 1$</td>
</tr>
<tr>
<td>2</td>
<td>not needed</td>
<td>$\varepsilon + 0 + (\varepsilon + 0 + 1)^*$</td>
<td>not needed</td>
<td>not needed</td>
</tr>
</tbody>
</table>

$E_{11}^2 = E_{12}^2 = \varepsilon + 0 + (\varepsilon + 0 + 1)^*$ is **optional**.
Theorem \((\text{DFA} \rightarrow \text{R.E.})\)

For every DFA \(A\), there is a R.E. \(E_A\) s.t. \(L(E_A) = L(A)\).

Proof Sketch: We show how to construct \(E_A\) by eliminating states of \(A\).

Consider the elimination of a state \(s_i\):

- If there was a path from state \(p\) to state \(q\) over \(s_i\),
 - after eliminating \(s_i\) the path does no longer exist.
 - we have to compensate for that.

We add a regular expression "connecting" \(p\) and \(q\) and capturing the missing path.

- We can eliminate in this way all states except initial and final states.

Strategy:

a) For each final state \(q\), eliminate all states except \(q, q_0\).

b) If \(q \neq q_0\), we are left with:

\[
(R + S \cdot U^* \cdot T)^* \cdot S \cdot U^*
\]

- If \(q = q_0\), we must eliminate all states except \(q_0\).

We are left with \(R^*\).

- We take the union of all derived R.E.s.
We view all edge labels as R.E.'s (missing labels mean ϕ).

Eliminate B:

$$E = \varnothing \cup 1 \cdot \varnothing^* \cdot (0+1) = 1 \cdot \varnothing^* \cdot (0+1) = 1 \cdot (0+1)$$

Eliminate C:

$$E_1 = (0+1)^* \cdot E = (0+1)^* \cdot 1 \cdot (0+1) \cdot (0+1)$$

$$E_2 = (0+1)^* \cdot 1 \cdot (0+1)$$

$$E = E_1 \cup E_2 = (0+1)^* \cdot 1 \cdot (0+1) \cdot (0+1) + (0+1)^* \cdot 1 \cdot (0+1)$$

$$= (0+1)^* \cdot 1 \cdot (0+1) \cdot (3 \cdot 0+1)$$