Exercise: (Section 3.3.2 from textbook)

Consider the following languages over \(\Sigma = \{0, 1\} \):

\[
L_e = \{ \varepsilon(M) \mid \mathcal{L}(M) = \emptyset \}
\]

\[
L_{\text{ne}} = \{ \varepsilon(M) \mid \mathcal{L}(M) \neq \emptyset \}
\]

Define: \(L_e \) as the set of all strings that encode T.M.s that accept the empty language.

\(L_{\text{ne}} \) as complement of \(L_e \)

Claim 1: \(L_{\text{ne}} \) is R.E.

Proof: Construct NTM \(N \) for \(L_{\text{ne}} \)

(and then convert \(N \) to an ordinary T.M.)

\(N \) works as follows: on input \(\varepsilon(M) \)

1) Guess a string \(w \in \Sigma^* \)

2) Simulate \(M \) on \(w \) (like a UTM)

3) Accept \(\varepsilon(M) \) if \(M \) accepts \(w \)

We have

\[
\varepsilon(M) \in \varepsilon(N) \iff \exists w \text{ s.t. } \langle \varepsilon(M), w \rangle \in \mathcal{L}(U)
\]

\[
\iff \exists w \text{ s.t. } w \in \mathcal{L}(M)
\]

\[
\iff \varepsilon(M) \in L_{\text{ne}}
\]
Claim 2: \(L_{ne} \) is non-recursive

Proof: by reduction from \(L_{ne} \) to \(L_{ne} \)

Reduction \(R \) is a function computable by a halting T.M.

with input: instance \(\langle \Sigma(M), w \rangle \) of \(L_{ne} \)

output: instance \(\Sigma(M') \) of \(L_{ne} \)

end. s.t.: \(\langle \Sigma(M), w \rangle \in L_{ne} \iff \Sigma(M') \in L_{ne} \)

Description of \(M' \):

- \(M' \) ignores completely its own input string \(\Sigma \)
- instead, it replaces its input by the string \(\langle \Sigma(M), w \rangle \) and simulates \(M \) on \(w \) using \(UTM \).
- if \(M \) accepts \(w \), then \(M' \) accepts \(\Sigma \)
 if \(M \) never halts on \(w \) or rejects \(w \), then \(M' \) also never halts on \(w \).

Note: if \(w \notin \Sigma(M) \Rightarrow L(M') = \Sigma^* \)
 if \(w \notin \Sigma(M) \Rightarrow L(M') = \emptyset \)

hence \(\langle \Sigma(M), w \rangle \in L_{ne} \iff \Sigma(M') \in L_{ne} \)

We can construct a halting T.M. \(M_R \) that, given \(\langle \Sigma(M), w \rangle \) as input, constructs \(\Sigma(M') \) for an \(M' \) that behaves as above.

q.e.d.

To sum up, we have that \(L_{ne} \) is R.E. but non-recursive.

Hence \(L_{e} \) must be non-R.E.
Exercise: 3.2.1

The halting problem, \(L_{halt} \), i.e., the set \(<E(M), w> \) s.t. \(M \) halts on \(w \) (with or without accepting) is R.E.
but not recursive.

To show R.E., we construct a T.M. \(H \), s.t.
\(L(H) = \{ <E(M), w> \mid M \) halts on \(w \}\}

\[
\begin{array}{ccc}
\langle E(M), w \rangle & \rightarrow & y \\
& | & \\
& U & \\
& | & \\
& y & \rightarrow y \\
& | & \\
& halt & \\
& | & \\
& no & \rightarrow no
\end{array}
\]

To show that \(L_H \) is not recursive, we assume by contradiction
it is so, and derive that \(L_{halt} \) is recursive.

By contradiction, let \(H \) be an algorithm for \(L_H \) and
\(U \) a procedure for \(L_{halt} \)

\[
\begin{array}{ccc}
\langle E(M), w \rangle & \rightarrow & y \\
& | & \\
& U & \\
& | & \\
& y & \rightarrow y \\
& | & \\
& \text{triggers} & \\
& | & \\
& no & \rightarrow no
\end{array}
\]

\(A_m \)

\(A_m \) would be an algorithm for \(L_{halt} \)

Contradiction
Let L be R.E. and \overline{L} be non-R.E.
Consider $L' = \{ow | w \in L\} \\
\{ow | w \notin L\}$

What do we know about L' and \overline{L}'?

We show that L' is non-R.E.

Suppose by contradiction that we have a procedure M_L for L'. Then we can construct a procedure $M_{\overline{L}}$ for \overline{L} as follows:
- on input w, $M_{\overline{L}}$ changes the input to ow and simulates M_L.
 - If M_L accepts ow, then $w \in L$, and $M_{\overline{L}}$ accepts.
 - If M_L does not terminate or terminates and answers no, then $w \notin L$, and $M_{\overline{L}}$ does not terminate or terminates and answers no.

$\Rightarrow M_{\overline{L}}$ would accept exactly \overline{L}. Contradiction.

$\overline{L} = \{ow | w \in L\} \cup \{ow | w \notin L\} \cup \{\varepsilon\}$

Reasoning as for L', we get that \overline{L}' is non-R.E.
F, the complement of the halting problem, i.e., the set of pairs \(<E(M), w>\) such that M on input w does not halt, is non-R.E.

Proof: By reduction from \(E_M\), which is non-R.E.

Idea: we show how to convert any TM \(M\) into another TM \(M^*_k\) such: \(M^*_k\) halts on \(w\) iff \(M\) accepts \(w\).

Construction:
1) Ensure that \(M^*_k\) does not halt unless \(M\) accepts.
 - add to the states of \(M\) a new loop state \(q\), with
 \(\delta(q, \epsilon) = (q, \epsilon, \epsilon)\) for all \(\epsilon \in \Sigma\)
 - for each \(\delta(q, y)\) that is undefined and \(q \in F\),
 add \(\delta(q, y) = (q, y, \epsilon)\)

2) Ensure that, if \(M\) accepts, then \(M^*_k\) halts
 - make \(\delta(q, \epsilon)\) undefined for all \(q \in F\) and \(\epsilon \in \Sigma\)

3) The other moves of \(M^*_k\) are as those of \(M\).

\(\square\)